Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Ai—total surface area in a given efficiency class [ha],
- Ac—total area [ha],
- Qi—middle of the variation range in class i [m3∙h−1].
4. Results and Discussion
4.1. Climatic Conditions
4.2. Water Needs and Water Shortages of Plants
4.3. Available Groundwater Resources
4.4. Possibility of Covering Potential Water Shortages in Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Reports. Available online: https://www.ipcc.ch/reports/ (accessed on 17 May 2022).
- IPCC. AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 17 May 2022).
- OECD. The Climate Challenge: Achieving Zero Emissions. 2013. Available online: http://www.oecd.org/env/the-climatechallenge-achieving-zero-emissions.htm (accessed on 20 February 2020).
- Van Vuuren, D.P.; Meinshause, M.; Plattner, G.K.; Joos, F.; Strassmann, K.M.; Smith, S.J.; Reilly, J.M. Temperature increase of 21st century mitigation scenarios. Proc. Natl. Acad. Sci. USA 2008, 105, 15258–15262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, Z.; Varga-László, E.; Anda, A.; Veisz, O.; Varga, B. Effects of Waterlogging, Drought and Their Combination on Yield and Water-Use Efficiency of Five Hungarian Winter Wheat Varieties. Water 2020, 12, 1318. [Google Scholar] [CrossRef]
- Thomas, R.K.; Zhang, R.; Horowitz, L.W. Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Communities 2016, 7, 13676. [Google Scholar]
- Mirgol, B.; Nazari, M. Possible Scenarios of Winter Wheat Yield Reduction of Dryland Qazvin Province, Iran, Based on Prediction of Temperature and Precipitation till the End of the Century. Climate 2018, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Majhi, S.; Pattnayak, K.C.; Pattnayak, R. Projections of rainfall and surface temperature over Nabarangpur district using multiple CMIP5 models in RCP 4.5 and 8.5 scenarios. Int. J. Appl. Res. 2016, 2, 399–405. [Google Scholar]
- Kostrzewska, M.K.; Jastrzębska, M.; Treder, K.; Wanic, M. Phosphorus in Spring Barley and Italian Rye-Grass Biomass as an Effect of Inter-Species Interactions under Water Deficit. Agriculture 2020, 10, 329. [Google Scholar] [CrossRef]
- Michalak, D. Adapting to climate change and effective water management in Polish agriculture-At the level of government institutions and farms. Ecohydrol. Hydrobiol. 2020, 20, 134–141. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Drastig, K.; Kreidenweis, U.; Meyer-Aurich, A.; Ammon, C.; Prochnow, A. Case Study of Effects of Mineral N Fertilization Amounts on Water Productivity in Rainfed Winter Rapeseed Cultivation on a Sandy Soil in Brandenburg (Germany) over Three Years. Water 2021, 13, 1958. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Hov, Ø.; Okruszko, T. (Eds.) Climate Change and Its Impact on Selected Sectors in Poland; Ridero IT Publishing: Poznań, Poland, 2017; pp. 61–79. [Google Scholar]
- Kundzewicz, Z.W.; Kozyra, J. Climate change impact on Polish agriculture. In Climate Change and Its Impact on Selected Sectors in Poland; Kundzewicz, Z.W., Hov, Ø., Okruszko, T., Eds.; Ridero IT Publishing: Poznań, Poland, 2017; pp. 158–171. [Google Scholar]
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowski, P.; Piniewski, M. Climate change efect on sowing and harvest dates of spring barley and maize in Poland. Int. Agrophys. 2018, 32, 265–271. [Google Scholar] [CrossRef]
- Falarz, M. (Ed.) Climate Change in Poland: Past, Present, Future; Springer Climate: Berlin/Heidelberg, Germany, 2021; p. 583. [Google Scholar]
- Vogel, E.; Donat, M.G.; Lisa, V.; Alexander, L.A.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yield. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manag. 2016, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Yumurtaci, A. Utilization of wild relatives of wheat, barley, maize and oat in developing abiotic and biotic stress tolerant new varieties. Emir. J. Food Agric. 2015, 27, 1–23. [Google Scholar] [CrossRef]
- Teichmann, C.; Bülow, K.; Otto, J.; Pfeifer, S.; Rechid, D.; Sieck, K.; Jacob, D. Avoiding Extremes: Benefits of Staying below +1.5 °C Compared to +2.0 °C and +3.0 °C Global Warming. Atmosphere 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Eitzinger, J.; Alexandrou, V.; Utset, A.; Saylan, L. Factors determining crop water productivity in agricultural crop production: A review. Ital. J. Agrometeorol. 2015, 3, 15–29. [Google Scholar]
- Savé, R.; De Herraldea, F.; Aranda, X.; Pla, E.; Pascual, D.; Funes, I.; Biel, C. Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed, during XXIst century: Results from a modeling approximation to watershed-level water balance. Agric. Water Manag. 2012, 114, 78–87. [Google Scholar] [CrossRef]
- Markou, M.; Moraiti, C.A.; Stylianou, A.; Papadavid, G. Addressing Climate Change Impacts on Agriculture: Adaptation Measures for Six Crops in Cyprus. Atmosphere 2020, 11, 483. [Google Scholar] [CrossRef]
- Gondim, R.S.; De Castro, M.A.H.; Maia, A.d.H.N.; Evangelista, S.R.M.; Fuck, S.C.d.F. Climate Change Impacts on Irrigation Water Needs in the Jaguaribe River Basin. J. Am. Water Resour. Assoc. 2012, 49, 247. [Google Scholar]
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- FAO. AQUASTAT website. In FAO’s Information System on Water and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 9789251095515. [Google Scholar]
- Chávez, C.; Limón-Jiménez, I.; Espinoza-Alcántara, B.; López-Hernández, J.A.; Bárcenas-Ferruzca, E.; Trejo-Alonso, J. Water-Use Efficiency and Productivity Improvements in Surface Irrigation Systems. Agronomy 2020, 10, 1759. [Google Scholar] [CrossRef]
- Unver, O.; Bhaduri, A.; Hoogeveen, J. Water-use efficiency and productivity improvements towards a sustainable pathway for meeting future water demand. Water Secur. 2017, 1, 21–27. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Koech, R.; Smith, R.; Gillies, M. Trends in the use of surface irrigation in Australian irrigated agriculture: An investigation into the role surface irrigation will play in future Australian agriculture. Water J. Aust. Water Assoc. 2015, 42, 84. [Google Scholar]
- FAO. Water Use in Livestock Production Systems and Supply Chains–Guidelines for Assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome. 2019. Available online: http://www.fao.org/partnerships/leap/resources/guidelines/en/ (accessed on 23 April 2021).
- Molden, D. Accounting for Water Use and Productivity SWIM Paper 1; International Irrigation Management Institute: Colombo, Sri Lanka, 1997; Available online: http://www.iwmi.cgiar.org/Publications/SWIM_Papers/PDFs/SWIM01.PDF (accessed on 23 April 2021).
- Boulay, A.; Drastig, K.; Chapagain, A.; Charlon, V.; Civit, B.; Hess, T.; Hoekstra, A.; Ibidhi, R.; Lathuillière, M. Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecol. Indic. 2021, 124, 107391. [Google Scholar] [CrossRef]
- Jabran, K.; Ullah, E.; Hussain, M.; Farooq, M.; Zaman, U.; Yaseen, M.; Chauhan, B.S. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop Sci. 2015, 201, 389–400. [Google Scholar] [CrossRef]
- Azahara Mesa-Jurado, M.; Martin-Ortegab, J.; Rutoc, E.; Berbel, J. The economic value of guaranteed water supply for irrigation under scarcity conditions. Agric. Water Manag. 2012, 113, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Díaz, J.A.; Perea, R.G.; Moreno, M.Á. Modelling and Management of Irrigation System. Water 2020, 12, 697. [Google Scholar] [CrossRef] [Green Version]
- Córcoles, J.I.; Gonzalez Perea, R.; Izquiel, A.; Moreno, M.Á. Decision Support System Tool to Reduce the Energy Consumption of Water Abstraction from Aquifers for Irrigation. Water 2019, 11, 323. [Google Scholar] [CrossRef] [Green Version]
- Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; van de Giesen, N. GlobWat-a global water balance model to assess water usage in irrigated agriculture. Hydrol. Earth Syst. Sci. 2015, 19, 3829–3844. [Google Scholar] [CrossRef] [Green Version]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Kitta, E.; Bartzanas, T.; Katsoulas, N.; Kittas, C. Benchmark Irrigated under Cover Agriculture Crops. Agric. Agric. Sci. Procedia 2015, 4, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence, in Discussion Paper on Irrigation and Sustainable Water Resources Management in the Near East and North Africa; Food and Agriculture Organization of the United Nations: Cairo, Egypt, 2017. [Google Scholar]
- Ferreira, D.; De Almeida, J.A.; Simões, M.; Pérez-Martín, M. Agricultural practices and geostatistical evaluation of nitrate pollution of groundwater in the Júcar River Basin District, Spain. Emir. J. Food Agric. 2016, 28, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Steidl, J.; Schuler, J.; Schubert, U.; Dietrich, O.; Zander, P. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water 2015, 7, 6351–6377. [Google Scholar] [CrossRef]
- Café-Filho, A.C.; Lopes, C.A.; Rossato, M. Management of Plant Disease Epidemics with Irrigation Practices, Irrigation in Agroecosystems, Gabrijel Ondrašek, IntechOpen. 2018. Available online: https://www.intechopen.com/books/irrigation-in-agroecosystems/management-of-plant-diseaseepidemics-with-irrigation-practices (accessed on 14 April 2020).
- Daccache, A.; Ciurana, J.S.; Rodriguez Diaz, J.A.; Knox, J.W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D. The Effects of Soil Compaction and Different Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields of Winter Oilseed Rape and Cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Barik, R.; Pattanayak, S.K. Assessment of Groundwater Quality for Irrigation of Green Spaces in the Rourkela City of Odisha, India. Groundw. Sustain. Dev. 2019, 8, 428–438. [Google Scholar] [CrossRef]
- Sobczyk, W. Anthropogenic processes of soil salinization. Educ. -Technol. -Inf. Technol. 2013, 4, 271–277. [Google Scholar]
- Kondracki, J. Regional Geography of Poland; PWN: Warsaw, Poland, 2000; pp. 99–103. [Google Scholar]
- Brodziński, Z.; Dragańska, E.; Cymes, I. Local Water Partnership in Braniewo Poviat, Pilot Program; WMODR: Olsztyn, Poland, 2020; pp. 1–53. [Google Scholar]
- Explanations to the Geo-Environmental Map of Poland, Sheet Baranowo. Available online: https://bazadata.pgi.gov.pl/data/mgsp/txt/mgsp0064.pdf (accessed on 25 April 2021).
- Environmental Protection Program of the Braniewo County, Taking into Account the Directions of Activities in 2012–2015. Available online: File:///C:/Users/UWM/AppData/Local/Temp/pos_powiat_braniewski_2008_2011-1.pdf (accessed on 23 April 2021).
- Paczyński, B. Hydrogeological Atlas of Poland on a Scale 1:5,000,000, Part 2; PIG: Warsaw, Poland, 1995; pp. 1–29. [Google Scholar]
- Ostrowski, J.; Łabędzki, L.; Kowalik, W.; Kanecka-Geszke, E.; Kasperska-Wołowicz, W.; Smarzyńska, K.; Tusiński, E. Atlas of Water Shortages in Arable Crops and Grasslands in Poland; Publisher IMUZ, Falenty: Warsaw, Poland, 2008; pp. 20–52. [Google Scholar]
- Lebedeva, M.G.; Lupo, A.R.; Solovyov, A.B.; Chendev, Y.G.; Rankoth, L.M. Sugar beet harvests under modern climatic conditions in the Belgorod region (Southwest Russia). Climate 2020, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Szwed, M. Variability of precipitation in Poland under climate change. Theor. Appl. Climatol. 2019, 135, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Pecio, A.; Wach, D. Grain yield and yield components of spring barley genotypes as the indicators of their tolerance to temporal drought stress. Pol. J. Agron. 2015, 21, 19–27. [Google Scholar]
- Cyriac, D.; Hofmann, R.W.; Stewart, A.; Sathish, P.; Winefield, C.S.; Moot, D.J. Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE 2018, 13, e194977. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris L.) in a moderate climate. Agronomy 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- FAO. World Corp Production Statistics. 2018. Available online: http//faostat.fao.org/ (accessed on 26 May 2020).
- Sprenger, H.; Rudack, K.; Schudoma, C.; Neumann, A.; Seddig, S.; Peter, R.; Zuther, E.; Kopka, J.; Hincha, D.; Walther, D.; et al. Assessment of drought tolerance and its potential yield in potato. Funct. Plant Biol. 2015, 42, 655–667. [Google Scholar] [CrossRef]
- Obidiegwu, J.; Bryan, G.; Jones, H.; Prashar, A. Coping with drought: Stress and adaptive response in potato and perspective for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Łabędzki, L. Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Chołuj, D.; Wiśniewska, A.; Szafrański, K.M.; Cebula, J.; Gozdowski, D.; Podlaski, S. Assessment of the physiological responses to drought in deferent sugar beet genotypes in connection with their genetic distance. J. Plant Physiol. 2014, 171, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, S.Y.; Fazli, H.; Mohammadian, R.; Taleghani, D.F.; Mesbah, M. Genetic variation for drought stress in sugar beet. J. Sugar Beet Res. 2000, 37, 55–78. [Google Scholar] [CrossRef]
- Vamerali, T.; Guarise, M.; Ganis, A.; Mosca, G. Effects of water and nitrogen management on fibrous root distribution and turnover in sugar beet. Eur. J. Agron. 2009, 31, 69–76. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, H.; Yu, L.; Hoogenboom, G. Application of the CSM-CERES-Wheat Model for Yield Prediction and Planting Date Evaluation at Guanzhong Plain in Northwest China. Agron. J. 2017, 109, 204–217. [Google Scholar] [CrossRef]
- Bakke, A.; Vickers, Z. Consumer liking of refined and whole wheat breads. J. Food Sci. 2007, 72, S473–S480. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on the reproductive process of cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal tillage as innovative element of the technology of growing winter wheat: A field experiment under low rainfall conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Jarecki, W. The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro-and Micronutrients. Agriculture 2021, 11, 515. [Google Scholar] [CrossRef]
- Gürel, F.; Öztürk, Z.N.; Uçarlı, C.; Rosellini, D. Barley genes as tools to confer abiotic stress tolerance in crops. Front. Plant Sci. 2016, 7, 1137. [Google Scholar] [CrossRef] [PubMed]
Crops | Water Demand | Max. Water Shortages p = 20% | Max. Water Shortages p = 50% |
---|---|---|---|
Rye | 250–280 | 153.3 | 104.6 |
Winter wheat | 270–300 | 177.5 | 123.2 |
Spring barley | 360–370 | 167.0 | 109.7 |
Late potato | 430–480 | 253.3 | 175.4 |
Sugar beet | 500–550 | 260.6 | 168.3 |
Winter rape | 350–400 | 66.8 | 34.1 |
Plant | Rye | Winter Wheat | Spring Wheat | Spring Barley | Late Potatoes | Sugar Beets | Winter Rape | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range of average shortages (mm) | 0–40 | 40–80 | 0–40 | 40–80 | 80–120 | 0–40 | 40–80 | 0–40 | 40–80 | 40–80 | 80–120 | 120–160 | 40–80 | 80–120 | 120–160 | 0–40 |
Water shortage with a probability of 20% | ||||||||||||||||
brown and loamy soils made of clay sands | 10.6 | 10.6 | 7.6 | |||||||||||||
brown soils made of light loams | 44.0 | 34.4 | 36.8 | 36.8 | 44.0 | 34.1 | 4.1 | 31.7 | ||||||||
lessive soils made of light loams | 45.4 | 35.5 | 38.0 | 38.0 | 45.4 | 30.2 | 9.4 | 32.8 | ||||||||
brown soils made of medium loams | 2.1 | 17.8 | 21.3 | 21.3 | 22.2 | 18.4 | ||||||||||
brown and lessive soils made of clay | 6.5 | 6.0 | ||||||||||||||
medium and heavy sacks | 3.6 | 3.9 | 3.9 | 3.4 | ||||||||||||
Water shortage with a probability of 50% | ||||||||||||||||
brown and loamy soils made of clay sands | 10.6 | 10.6 | 7.6 | |||||||||||||
brown soils made of light loams | 44.0 | 34.4 | 36.8 | 36.8 | 28.0 | 16.0 | 38.3 | 31.7 | ||||||||
lessive soils made of light loams | 45.4 | 35.5 | 38.0 | 38.0 | 33.9 | 11.5 | 39.5 | 32.8 | ||||||||
brown soils made of medium loams | 19.9 | 21.3 | 21.3 | 22.2 | 18.4 | |||||||||||
brown and lessive soils made of clay | 6.5 | 6.0 | ||||||||||||||
medium and heavy sacks | 3.6 | 3.9 | 3.9 | 3.4 |
Potential Well Performance Class i | Potential Capacity Value Range in a Given Class Qmini ÷ Qmaxi (m3∙h−1) | The Middle of the Range of Variability Qi (m3∙h−1) | Number of Areas of a Given Class Within a Poviat Ni | The Total Area in a Given Efficiency Class Ai (ha) | Percentage Share of the Efficiency Class in the Poviat Area αi (%) | Weighted Average Capacity of Potential Wells in the Poviat Area Qavg (m3∙h−1) |
---|---|---|---|---|---|---|
1 | No GUPW * | 0 | 1 | 228.25 | 0.19 | 42.40 |
2 | 0–10 | 5 | 1 | 320.89 | 0.27 | |
3 | 10–30 | 20 | 8 | 32,496.17 | 26.98 | |
4 | 30–50 | 40 | 3 | 49,615.51 | 41.19 | |
5 | 50–70 | 60 | 10 | 27,621.01 | 22.93 | |
6 | >70 | 80 | 8 | 10,171.47 | 8.44 | |
Sum | 31 | 120,453.30 | 100.00 |
Crop | Size of Shortages | The Range of Potential Capacity of a Drilled Well Entering the Main Usable Groundwater Level | |||||
---|---|---|---|---|---|---|---|
(mm) | 0 | 0–10 | 10–30 | 30–50 | 50–70 | >70 | |
Rye | 0–40 | 0.0 | 0.0 | 11.4 | 33.5 | 18.7 | 8.7 |
Winter wheat | 0–40 | 0.0 | 0.3 | 4.0 | 3.2 | 1.3 | 0.5 |
40–80 | 0.0 | 0.0 | 20.6 | 36.2 | 18.2 | 8.4 | |
Spring wheat | 0–40 | 0.0 | 0.0 | 21.3 | 38.3 | 18.5 | 8.6 |
Spring barley | 0–40 | 0.0 | 0.0 | 21.3 | 38.3 | 18.2 | 8.6 |
Late potato | 40–80 | 0.0 | 0.0 | 6.1 | 23.4 | 15.1 | 7.8 |
80–120 | 0.0 | 0.0 | 5.4 | 10.0 | 3.5 | 1.0 | |
Sugar beet | 40–80 | 0.0 | 0.0 | 20.7 | 36.1 | 17.8 | 8.4 |
Winter rape | 0–40 | 0.0 | 0.3 | 24.9 | 43.2 | 22.3 | 9.3 |
Crop | Size of Shortages | The Range of Potential Capacity of a Drilled Well Entering the Main Usable Groundwater Level | |||||
---|---|---|---|---|---|---|---|
(mm) | 0 | 0–10 | 10–30 | 30–50 | 50–70 | >70 | |
Rye | 0–40 | 0.0 | 0.0 | 0.2 | 3.9 | 3.1 | 0.4 |
40–80 | 0.0 | 0.0 | 11.2 | 29.5 | 15.5 | 8.4 | |
Winter wheat | 40–80 | 0.0 | 0.3 | 6.0 | 3.2 | 1.3 | 0.5 |
80–120 | 0.0 | 0.0 | 18.7 | 36.1 | 17.8 | 8.4 | |
Spring wheat | 0–40 | 0.0 | 0.0 | 0.7 | 2.1 | 0.4 | 0.2 |
40–80 | 0.0 | 0.0 | 20.6 | 36.2 | 17.8 | 8.4 | |
Spring barley | 0–40 | 0.0 | 0.0 | 0.7 | 2.1 | 0.4 | 0.2 |
40–80 | 0.0 | 0.0 | 20.7 | 36.1 | 17.8 | 8.4 | |
Late potato | 80–120 | 0.0 | 0.0 | 0.2 | 3.9 | 3.1 | 0.4 |
120–160 | 0.0 | 0.0 | 11.2 | 29.6 | 15.5 | 8.4 | |
Sugar beet | 80–120 | 0.0 | 0.0 | 16.6 | 29.2 | 14.7 | 7.5 |
120–160 | 0.0 | 0.0 | 4.0 | 7.0 | 3.2 | 0.9 | |
Winter rape | 0–40 | 0.0 | 0.3 | 24.9 | 43.2 | 22.3 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cymes, I.; Dragańska, E.; Brodziński, Z. Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change. Agriculture 2022, 12, 739. https://doi.org/10.3390/agriculture12060739
Cymes I, Dragańska E, Brodziński Z. Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change. Agriculture. 2022; 12(6):739. https://doi.org/10.3390/agriculture12060739
Chicago/Turabian StyleCymes, Ireneusz, Ewa Dragańska, and Zbigniew Brodziński. 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change" Agriculture 12, no. 6: 739. https://doi.org/10.3390/agriculture12060739
APA StyleCymes, I., Dragańska, E., & Brodziński, Z. (2022). Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change. Agriculture, 12(6), 739. https://doi.org/10.3390/agriculture12060739