The Impact of the Renovation of Grassland on the Development of Segetal Weeds in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Cultivation Management
2.2. Analysis of the Weed Population
2.3. Diversity Indicators
2.4. Weather Conditions
2.5. Experimental Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fauvel, M.; Lopes, M.; Dubo, T.; Rivers-Moore, J.; Frison, P.-L.; Gross, N.; Ouin, A. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series. Remote Sens. Environ. 2020, 237, 111536. [Google Scholar] [CrossRef]
- Török, P.; Vida, E.; Deák, B.; Lengyel, S.Z.; Tóthmérész, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 2011, 20, 2311–2332. [Google Scholar] [CrossRef]
- Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F. Evaluation of SPOT imagery for the estimation of grassland. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 72–77. [Google Scholar] [CrossRef]
- Golka, W.; Żurek, G.; Kamiński, J.R. Permanent grassland restoration techniques—An overview. Agric. Eng. 2016, 20, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Burczyk, P.; Gamrat, R.; Gałczyńska, M.; Saran, E. The role grasslands in providing ecological sustainability of the natural environment. Water Environ. Rural Areas 2018, 18, 21–37. [Google Scholar]
- Tiainen, J.; Hyvönen, T.; Hagner, M.; Huusela-Veistola, E.; Louhi, P.; Miettinen, A.; Nieminen, T.M.; Palojärvi, A.; Seimola, T.; Taimisto, P.; et al. Biodiversity in intensive and extensive grasslands in Finland: The impacts of spatial and temporal changes of agricultural land use. Agric. Food Sci. 2020, 29, 68–97. [Google Scholar] [CrossRef]
- Milberg, P.; Tälle, M.; Fogelfors, H.; Westerberg, L. The biodiversity cost of reducing management intensity in species-rich grasslands: Mowing annually vs. every third year. Basic Appl. Ecol. 2017, 22, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.M.; Wilsey, B.J. Assessing grassland restoration success: Relative role of seed additions and native ungulate activities. J. Appl. Ecol. 2006, 43, 1098–1109. [Google Scholar] [CrossRef]
- DiTomaso, J.M. Invasive weeds in rangelands: Species, impacts, and management. Weed Sci. 2000, 48, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Goslee, S.C.; Peters, D.P.C.; Beck, K.G. Modeling invasive weeds in grasslands: The role of allelopathy in Acroptilon repens invasion. Ecol. Model. 2001, 139, 31–45. [Google Scholar] [CrossRef]
- Döring, T.F.; Storkey, J.; Baddeley, J.A.; Collins, R.P.; Crowley, O.; Howlett, A.A.; Jones, H.E.; McCalman, H.; Measures, M.; Pearce, H.; et al. Weeds in organic Fertility-building leys: Aspects of species richness and weed management. Org. Farming 2017, 3, 51–65. [Google Scholar] [CrossRef]
- Panetta, F.D.; James, R.F. Weed control thresholds: A useful concept in natural ecosystems? Plant Prot. Q. 1999, 14, 68–76. [Google Scholar]
- Dąbrowska, T. Charakterystyka wybranych gatunków ziół i chwastów użytków zielonych. In Trwałe Użytki Zielone w Gospodarstwie Ekologicznym, 2nd ed.; Tyburski, J., Grzegorczyk, S., Eds.; Uniwersytet Warmińsko-Mazurski w Olsztynie: Olsztyn, Poland, 2013; pp. 85–114. ISBN 9788362863570. [Google Scholar]
- Martin, L.M.; Moloney, K.A.; Wilsey, B.J. An assessment of grassland restoration success using species diversity components. J. Appl. Ecol. 2005, 42, 327–336. [Google Scholar] [CrossRef]
- Janicka, M. Re-growth of original sward following meadow renovation by over drilling—central Poland. In Proceedings of the 3th Symposium on Integrating Efficient Grassland Farming and Biodiversity, Tartu, Estonia, 2–31 August 2005; Lillak, R., Viiralt, R., Linke, A., Geherman, V., Eds.; Estonian Grassland Society (EGS): Tartu, Estonia, 2005; Volume 10, pp. 625–628, ISBN 9985-9611-3-7. [Google Scholar]
- Rayburn, A.P.; Laca, E. Strip-seeding for grassland restoration: Past successes and future potential. Restor. Ecol. 2013, 31, 147–153. [Google Scholar] [CrossRef]
- Neciu, F.C.; Sãplacan, G.; Rechiţean, D.; Dragomir, N. Forage chicory (Cichorium intybus L.)—Pretability in crops and effects in ruminants feeding. Anim. Sci. Biotechnol. 2004, 50, 170–175. [Google Scholar]
- Zając, M.; Spychalski, W.; Goliński, P. Effect of different methods of sward renovation on selected physical and chemical soil properties. In Proceedings of the 23rd EGF General Meeting on Grassland in a Changing World, Kiel, Germany, 29 August–2 September 2010; Schnyder, H., Isselstein, J., Taube, F., Auerswald, K., Schellberg, J., Wachendorf, M., Herrmann, A., Gierus, M., Wrage, N., Hopkins, A., Eds.; Estonian Grassland Society (EGS): Tartu, Estonia, 2010; Volume 15, pp. 226–228, ISBN 978-3-86944-021-7. [Google Scholar]
- Seefeldt, S.S.; Stephens, J.M.C.; Verkaaik, M.L.; Rahman, A. Quantifying the impact of a weed in a perennial ryegrass-white clover pasture. Weed Sci. 2005, 53, 113–120. [Google Scholar] [CrossRef]
- Harrington, K.C.; Thatcher, A.; Kemp, P.D. Mineral composition and nutritive value of some common pasture weeds. N. Z. Plant Prot. 2006, 59, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Tracy, B.F.; Renne, I.J.; Gerrish, J.; Sanderson, M.A. Effect of plant diversity on invasion of weed species in experimental pasture communities. Bassic Appl. Ecol. 2004, 5, 543–550. [Google Scholar] [CrossRef]
- Wrage, N.; Strodthoff, J.; Cucillo, H.M.; Isselstein, J.; Kayser, M. Phytodiversity of temperate permanent grasslands: Ecosystem services for agriculture and livestock diversity conservation. Biodivers. Conserv. 2011, 20, 3317–3339. [Google Scholar] [CrossRef] [Green Version]
- Bailey, K.; Derby, J.-A.; Bourdôt, G.; Skipp, B.; Cripps, M.; Hurrell, G.; Saville, D.; Noble, A. Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: Proof of concept. BioControl 2017, 62, 693–704. [Google Scholar] [CrossRef]
- Auld, B.A.; Hetherington, S.D.; Smith, H. Advances in bioherbicide formulation. Weed Biol. Manag. 2003, 3, 61–67. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C. Weed management in New Zealand Pastures. Agronomy 2019, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- Bojarszczuk, J.; Podleśny, J. Segetal diversity in selected legume crops depending on soil tillage. Agriculture 2020, 10, 635. [Google Scholar] [CrossRef]
- Blumenthal, D.M.; Jordan, N.R.; Svenson, E.L. Effects of prairie restoration on weed invasions. Agric. Ecosyst. Environ. 2005, 107, 221–230. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Gastal, F.; Doisy, D.; Charrier, X.; de Moraes, A.; Médiène, S.; Barbu, C.M. Weed regulation by crop and grassland competition: Critical biomass level and persistence rate. Eur. J. Agron. 2020, 113, 125963. [Google Scholar] [CrossRef]
- Available online: https://agriland.pl/produkty/lucerna-w-mieszance/ (accessed on 30 September 2021).
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zajac, M. Flowering Plants and Pteridophytes of Poland a Checklist. In Krytyczna Lista Roślin Naczyniowych Polski; W. Szafer Institute of Botany, Polish Academy of Science: Kraków, Poland, 2002; p. 442. [Google Scholar]
- Patriquin, D.G.; Bains, D.; Lewis, J.; Macdougall, A. Weed control in organic farming systems. In Weed Control in Agroecosystems: Ecological Approaches; Altieri, M.A., Liebman, M., Eds.; CRS Press: Boca Raton, FL, USA, 1988; pp. 303–317. [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 168, 668. [Google Scholar] [CrossRef]
- Kayser, M.; Müller, J.; Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 2018, 7, e00146. [Google Scholar] [CrossRef]
- Elsaesser, M. Grassland renovation as a possibility for increasing nitrogen efficiency. Grassl. Sci. Eur. 2012, 17, 607–609. Available online: https://www.europeangrassland.org/en/infos/printed-matter/proceedings.html (accessed on 15 March 2022).
- Gaweł, E.; Grzelak, M. Influence of grassland renovation methods on dry matter and protein yields and nutritive value. Apple. Ecol. Environ. Res. 2020, 18, 1661–1677. [Google Scholar] [CrossRef]
- Terlikowski, J.; Barszczewski, J. The effectiveness of permanent grassland renovation under different soil and climatic conditions. J. Res. Appl. Agric. Eng. 2015, 60, 112–119. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-63f0c379-4afc-4425-b462-4edbff033181 (accessed on 15 March 2022).
- Isselstein, J.; Kayser, M. Grassland renovation and consequences for nutrient management. In Proceedings of the 23rd International Grassland Congress 2015—Keynote Lectures, New Delhi, India, 20–24 November 2015; Grassland Production and Utilization. Roy, M.M., Malaviya, D.R., Yadav, V.K., Singh, T., Sah, R.P., Vijay, D., Radhakrishna, A., Eds.; Range Management Society of India: Jhansi, India, 2015; pp. 105–116. [Google Scholar]
- Wilsey, B.J.; Chalcraft, D.R.; Bowles, C.M.; Willig, M.R. Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 2005, 86, 1178–1184. [Google Scholar] [CrossRef]
- Segar, R.; Li, G.Y.; Singh, J.S.; Wan, S.H. Carbon fluxes and species diversity in grazed and fenced typical steppe grassland of Inner Mongolia, China. J. Plant Ecol. 2019, 12, 10–22. [Google Scholar] [CrossRef]
- Valkó, O.; Deák, B.; Török, P.; Kelemen, A.; Miglécz, T.; Tóth, K.; Tóthméerész, B. Abandonment of croplands: Problem or chance for grassland restoration? Case studies from hungary. Ecosys. Health Sustain. 2016, 2, e01208. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.; Chojnacki, J. Remote grasslands crop productivity measurements with usage of multispectral camera and small unmanned aerial vehicle. J. Res. Appl. Agric. Eng. 2018, 63, 151–154. [Google Scholar]
- Wang, R.; Gamon, J.A.; Cavender-Bares, J.; Townsend, P.A.; Zygielbaum, A.I. The spatial sensitivity of the spectral diversity-biodiversity relationship: An experimental test in a prairie grassland. Ecol. Appl. 2018, 28, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, H.; Gamon, J.A.; Townsend, P.A.; Zygielbaum, A.I.; Helzer, C.J.; Hmimina, G.Y.; Yu, R.; Moore, R.M.; Schweiger, A.K.; Cavender-Bares, J. Detecting prairie biodiversity with airborne remote sensing. Remote Sens. Environ. 2019, 221, 38–49. [Google Scholar] [CrossRef]
Content of Soil Fraction (%) | N mg kg−1 | Soil pHKCl | Absorbable Form in Soil mg·(100 g)−1 | Total Calcium (%) | Corg (TOC) (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
1–0.1 mm | 0.1–0.02 mm | <0.02 mm | N–NH4 | N–NO3 | P2O5 | K2O | Mg | |||
56 | 24 | 20 | 6.00 | 16.90 | 6.52 | 13.06 | 7.25 | 14.83 | 0.35 | 2.05 |
Specification | Month | Sum/Average III–IX | ||||||
---|---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | IX | ||
2013 | ||||||||
Precipitation (mm) | 41.1 | 29.9 | 112.0 | 116.3 | 20.8 | 11.6 | 63.9 | 395.6 |
Temperature (°C) | −2.1 | 8.3 | 15.3 | 18.6 | 19.7 | 19.2 | 11.8 | 15.1 |
2014 | ||||||||
Precipitation (mm) | 42.0 | 56.6 | 154.9 | 90.7 | 115.3 | 98.8 | 15.9 | 574.2 |
Temperature (°C) | 6.3 | 9.9 | 13.5 | 15.2 | 20.4 | 17.9 | 14.4 | 13.9 |
2015 | ||||||||
Precipitation (mm) | 63.2 | 34.8 | 107.0 | 30.3 | 51.7 | 6.2 | 93.9 | 387.1 |
Temperature (°C) | 5.0 | 8.1 | 12.7 | 16.9 | 19.7 | 22.1 | 15.0 | 14.2 |
2016 | ||||||||
Precipitation (mm) | 52.3 | 45.1 | 39.4 | 60.1 | 81.9 | 53.6 | 20.3 | 352.7 |
Temperature (°C) | 3.9 | 9.2 | 14.9 | 18.7 | 19.2 | 18.1 | 15.7 | 14.2 |
Average long-term precipitation (mm) | 30.0 | 41.0 | 57.0 | 71.0 | 84.0 | 75.0 | 50.0 | 408.0 |
Average long-term temperature (°C) | 1.6 | 7.8 | 13.4 | 16.8 | 18.4 | 17.3 | 13.2 | 12.6 |
Methods Renovation | Regrowth | ||
---|---|---|---|
1 | 2 | 3 | |
ANOVA summary | |||
F-ratio | 0.58 | 6.24 | 6.19 |
p-Value | 0.57 | 0.019 | 0.02 |
Standard error (SE) | 9.56 | 6.69 | 9.4 |
Methods Renovation | Regrowth | ||
---|---|---|---|
1 | 2 | 3 | |
ANOVA summary | |||
F-ratio | 7.22 | 5.3 | 4.63 |
p-Value | 0.013 | 0.03 | 0.041 |
Standard error (SE) | 37.7 | 16.92 | 13.34 |
Methods Renovation | Regrowth | ||
---|---|---|---|
1 | 2 | 3 | |
ANOVA summary | |||
F-ratio | 3.22 | 8.41 | 9.008 |
p-Value | 0.088 | 0.0087 | 0.0071 |
Standard error (SE) | 2.092 | 2.96 | 3.21 |
Weed Species | A/P | Plants per 1 m−2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Regrowths of the Sward | ||||||||||
1 | 2 | 3 | ||||||||
P | H | NR | P | H | NR | P | H | NR | ||
Herbs | ||||||||||
Taraxacum officinale Web. MP, PP | P | 52.8 | 34.5 | 39.17 | 106.0 | 73.67 | 54.0 | 104.33 | 69.58 | 86.58 |
Glechoma hederacea L. | P | 0.33 | - | 3.0 | - | - | 0.16 | - | - | - |
Plantago lanceolata L. | P | - | - | 3.7 | 0.33 | 0.5 | 7.0 | 0.67 | 1.33 | 3.83 |
Achillea millefolium L. | P | 6.67 | 7.67 | 34.67 | 3.33 | 17.83 | 47.67 | 0.5 | 23.2 | 79.8 |
Rumex acetosella L.), PP | P | - | 0.33 | - | - | 0.83 | - | 0.25 | 0.3 | - |
Capsella bursa-pastoris L. | A | 22.2 | 13.5 | 2.2 | - | 1.2 | 0.8 | 0.3 | - | - |
Plantago maior L. | P | 9.0 | 6.3 | 1.0 | 8.0 | 8.8 | 0.5 | 3.7 | 4.5 | 0.2 |
Anagallis arvensis L., MP, PP | A | - | - | - | 1.5 | 0.75 | 3.8 | 2.3 | 0.2 | 3.6 |
Chenopodium album L. | A | - | - | - | 1.3 | 5.0 | - | 1.2 | 1.9 | 1.8 |
Lamnium purpureum L. | A | 1.2 | 0.3 | - | - | - | - | - | - | - |
Potentilla reptans L., MP | P | - | - | 4.5 | - | 0.5 | 0.6 | - | - | - |
Viola tricolor L. MP | A | - | - | 0.2 | - | - | - | - | - | - |
Prunella vulgaris L., MP | P | - | - | - | - | - | 0.2 | - | - | - |
Rumex acetosa L., MP | P | - | - | - | - | 0.2 | - | - | - | - |
Artemisia vulgaris L., MP, PP | P | 0.3 | 3.3 | - | - | - | - | - | - | - |
Polygonum aviculare L., MP | A | - | 0.2 | 0.2 | 0.3 | - | - | 0.2 | - | - |
Geranium pratense L. | A | - | - | - | 0.2 | - | - | - | - | 0.5 |
Total dicotyledonous herbs | - | 92.53 | 66.1 | 88.64 | 120.96 | 109.28 | 114.73 | 113.45 | 101.01 | 176.31 |
Dicotyledonous weeds | ||||||||||
Stellaria media (L.) Vill. | A | 16.7 | 3.7 | 22.5 | 20.2 | 15.9 | 14.8 | 19.5 | 13.7 | 14.8 |
Geranium molle L. | A | 6.7 | 0.8 | 3.7 | - | - | 0.5 | - | - | 0.17 |
Cirsium arvense L. | P | 0.5 | 0.5 | 0.3 | 0.2 | - | - | 0.1 | - | - |
Ranunculus arvensis L., PP | A | - | 0.3 | - | - | - | 0.2 | - | - | - |
Ranunculus acris L., MP | P | - | - | 0.3 | - | - | 0.2 | - | - | 0.3 |
Ranunculus repens L., PP | P | - | - | - | - | - | - | - | - | 1.2 |
Erigeron canadensis L. | A | - | - | 0.3 | 1.0 | 0.3 | - | 0.8 | 0.5 | - |
Crepis tectorum L. | A | - | - | - | - | - | 11.3 | 0.5 | - | 15.8 |
Veronica arvensis L. | A | 1.3 | 0.3 | 3.3 | 1.3 | 0.5 | - | 0.5 | 0.25 | 0.3 |
Sonchus asper L. Hill. | A | - | - | 1.5 | - | - | 0.3 | - | - | - |
Cerastium arvense L. | P | - | - | - | - | - | - | 1.3 | 1.0 | - |
Daucus carota L. | A/P | - | - | - | 0.3 | - | - | - | - | 0.6 |
Convolvulus arvensis L., PP | P | 0.2 | - | - | - | - | - | - | - | - |
Linaria voulgaris L., MP, PP | P | - | - | - | - | - | 0.5 | - | - | - |
Aegopodium podagraria L. | P | - | 0.2 | - | - | - | - | - | - | - |
Thymus serpyllum L. | P | - | - | - | - | - | 0.3 | - | - | - |
Polygonum convolvulus L., PP | A | - | - | - | - | 0.5 | - | - | - | |
Galium aparine L. | A | - | - | - | - | - | 0.2 | - | - | - |
Total dicotyledonous weeds | 25.40 | 5.5 | 31.90 | 23.0 | 16.7 | 28.8 | 22.7 | 15.45 | 33.17 | |
Sum of dicotyledonous herbs and weeds | 117.93 | 71.6 | 120.54 | 143.9 | 125.98 | 143.53 | 136.15 | 116.46 | 209.48 | |
Monocotyledonous weeds | ||||||||||
Echinochloa crus-galli L. | A | - | - | - | 1.3 | - | - | - | - | - |
Poa annua L. | A | - | 2.0 | - | - | 0.7 | - | 1.0 | - | 1.75 |
Setaria viridis L. P. Beauv. | A | - | - | - | - | - | - | 0.25 | 0.5 | - |
Sum of monocotyledonous weeds | - | - | 2.0 | 0.0 | 1.3 | 0.7 | 0.0 | 1.25 | 0.5 | 1.75 |
Horsetail | ||||||||||
Equisetum arvense L. MP, PP | P | 0.3 | - | - | - | - | - | - | - | - |
Sum of dicotyledonous and monocotyledonous herbs and weeds and horsetail | - | 118.23 | 75.6 | 120.54 | 145.2 | 126.68 | 143.53 | 137.40 | 116.96 | 211.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł, E.; Grzelak, M.; Waliszewska, B.; Janyszek-Sołtysiak, M. The Impact of the Renovation of Grassland on the Development of Segetal Weeds in Organic Farming. Agriculture 2022, 12, 738. https://doi.org/10.3390/agriculture12050738
Gaweł E, Grzelak M, Waliszewska B, Janyszek-Sołtysiak M. The Impact of the Renovation of Grassland on the Development of Segetal Weeds in Organic Farming. Agriculture. 2022; 12(5):738. https://doi.org/10.3390/agriculture12050738
Chicago/Turabian StyleGaweł, Eliza, Mieczysław Grzelak, Bogusława Waliszewska, and Magdalena Janyszek-Sołtysiak. 2022. "The Impact of the Renovation of Grassland on the Development of Segetal Weeds in Organic Farming" Agriculture 12, no. 5: 738. https://doi.org/10.3390/agriculture12050738
APA StyleGaweł, E., Grzelak, M., Waliszewska, B., & Janyszek-Sołtysiak, M. (2022). The Impact of the Renovation of Grassland on the Development of Segetal Weeds in Organic Farming. Agriculture, 12(5), 738. https://doi.org/10.3390/agriculture12050738