Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance
Abstract
:1. Introduction
2. Structure and Forming Principle of Straw Ring Die Forming Press
2.1. Structure of Straw Briquetting Machine
2.2. Working Principle of Briquetting Forming
3. Materials and Methods
3.1. Materials
3.2. Experimental Method
3.2.1. Measuring Method of Relaxed Density
3.2.2. Measuring Method of Impact Resistance
3.3. Experiment Design and Method
3.3.1. Orthogonal Experiment
3.3.2. Data Analysis Methods
4. Results and Discussion
4.1. Results of Orthogonal Experiment
4.2. Regression Model of Relaxed Density and Impact Resistance
4.2.1. Analysis of Variance for Regression Model of Relaxed Density
4.2.2. Analysis of Variance for Regression Model of Impact Resistance
4.2.3. Analysis of the Model
4.3. Optimum Conditions for Producing High Quality Briquette
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, J.; Li, S.; Xing, Z.; Cheng, S.; Liu, Q.; Zhou, L.; Liao, P.; Hu, Y.; Guo, B.; Wei, H.; et al. Seedling Establishment and Yield Performance of Dry Direct-Seeded Rice after Wheat Straw Returning Coupled with Early Nitrogen Application. Agriculture 2022, 12, 565. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, B.; Liu, X.; Ren, H.; Li, X.Y.; Li, Y.M. Structural model and bundling capacity of crawler picking and baling machine for straw wasted in field. Comput. Electron. Agric. 2020, 175, 105622. [Google Scholar] [CrossRef]
- Guo, L.J.; Zhao, J. Effect of burning straw in rural areas on ecological environment quality. Arab. J. Geosci. 2021, 14, 1357. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Deng, M.S.; Shan, M.; Zhou, C.; Liu, W.; Xu, X.Q.; Yang, X.D. Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China. Energy Policy 2019, 128, 654–664. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Leahy, J.J.; Yazhenskikh, E.; Mulller, M.; Layden, P.; Johnson, R.; Stahl, K.; Monaghan, R.F.D. Characterization of woodstove briquettes from torrefied biomass and coal. Energy 2019, 171, 853–865. [Google Scholar] [CrossRef]
- Tang, Z.; Liang, Y.Q.; Wang, M.L.; Zhang, H.; Wang, X.Z. Effect of mechanical properties of rice stem and its fiber on the strength of straw rope. Ind. Crop. Prod. 2022, 180, 114729. [Google Scholar] [CrossRef]
- Said, N.; Daiem, M.; García-Maraver, A.; Zamorano, M. Influence of densification parameters on quality properties of rice straw pellets. Fuel Process. Technol. 2015, 138, 56–64. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Mani, I. Effect of binders and pressures on physical quality of some biomass briquettes. J. Agric. Eng. 2009, 44, 24–30. [Google Scholar]
- Ai, P.; Zhang, X.; Ran, Y.; Meng, L.; Abomohra, E.F. Biomass briquetting reduces the energy loss during long-term ensiling and enhances anaerobic digestion: A case study on rice straw. Bioresour. Technol. 2019, 292, 121912. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Li, X.Y.; Xu, T.B. Structural damage modes for rice stalks undergoing threshing. Biosyst. Eng. 2019, 186, 323–336. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenerg. 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A review of technical and economic aspects of biomass briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Chen, S.; Ding, H.T.; Tang, Z.; Hao, S.H.; Zhao, Y.F. Influence of rice straw forming factors on ring die wear and improved wear prediction model during briquetting. Biosyst. Eng. 2022, 214, 122–137. [Google Scholar] [CrossRef]
- Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision support system for the production of miscanthus and willow briquettes. Energies 2020, 13, 1364. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, K.; Sun, Y. Effects of raw material particle size on the briquetting process of rice straw. J. Energy Inst. 2018, 91, 153–162. [Google Scholar] [CrossRef]
- Trinh, Q.V.; Nagy, S.; Faitli, J.; Cske, B. Determination of radial pressure distribution on the wall of the press channel of a novel biomass single die pelletiser. Eur. J. Wood Prod. 2020, 78, 1075–1086. [Google Scholar] [CrossRef]
- Guo, W.B.; Wang, Z.P.; Hu, F.; Hou, Z.B.; De, X.H. Parameter Optimization Study Based on Co-Briquetting Tests of Corn Straw and Potato Residue. BioResources 2022, 17, 1001–1014. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, D.J.; Gao, L.W.; Duan, R.Z. Distributed heating/centralized monitoring mode of biomass briquette fuel in chinese northern rural areas. Renew. Energy 2020, 147, 1221–1230. [Google Scholar] [CrossRef]
- Mousa, E.; Kazemi, M.; Larsson, M.; Karlsson, G.; Persson, E. Potential for developing biocarbon briquettes for foundry industry. Appl. Sci. 2019, 9, 5288. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, M.E.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.A.; Xiang, J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renew. Sust. Energ. Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Okot, D.K.; Bilsborrow, P.E.; Phan, A.N. Briquetting characteristics of bean straw-maize cob blend. Biomass Bioenergy 2019, 126, 150–158. [Google Scholar] [CrossRef]
- Chen, T.Y.; Jia, H.L.; Zhang, S.W.; Sun, X.M.; Song, Y.Q.; Yuan, H.F. Optimization of cold pressing process parameters of chopped corn straws for fuel. Energies 2020, 13, 652. [Google Scholar] [CrossRef] [Green Version]
- Dyjakon, A.; Sobol, U.; Krotowski, M.; Mudryk, K.; Kawa, K. The impact of particles comminution on mechanical durability of wheat straw briquettes. Energies 2020, 13, 6186. [Google Scholar] [CrossRef]
- Yang, J.Q.; Wang, J.R.; Li, J.; Shi, L.W.; Dai, X.W. Optimum Design of Multidischarge Outlet Biomass Briquetting Machine. Complexity 2020, 2020, 8818632. [Google Scholar] [CrossRef]
- Wu, K.; Shi, S.; Peng, B.; Ding, W.; Yu, S. Modeling and analysis on extruding force in pelleting process. Trans. Chin. Soc. Agric. Eng. 2010, 26, 142–147. [Google Scholar]
- Xia, X.F.; Sun, Y.; Wu, K.; Jiang, Q.H. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method. Fuel Process. Technol. 2016, 152, 303–309. [Google Scholar] [CrossRef]
- Cui, X.Y.; Yang, J.H.; Shi, X.Y.; Lei, W.N.; Huang, T.; Bai, C. Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM). Processes 2019, 7, 591. [Google Scholar] [CrossRef] [Green Version]
- Song, X.X.; Zhang, M.; Pei, Z.J.; Wang, D.H. Ultrasonic vibration-assisted pelleting of wheat straw: A predictive model for energy consumption using response surface methodology. Ultrasonics 2013, 54, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, M.; Asghar, A.; Ramzan, N.; Sajjadi, B.; Chen, W.Y. Biomass densification: Effect of cow dung on the physicochemical propertiesof wheat straw and rice husk based biomass pellets. Biomass Bioenergy 2019, 122, 1–16. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Aksoy, D.O.; Sagol, E. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 2016, 183, 609–616. [Google Scholar] [CrossRef]
- Ramezanzade, M.; Moghaddam, A.G. Optimizing the production parameters for pellets made from pistachio tree pruning using multi-response optimization. Waste Biomass Valorization 2018, 9, 1213–1221. [Google Scholar] [CrossRef]
- Lu, D.H.; Tabil, L.G.; Wang, D.C.; Wang, G.H.; Wang, Z.Q. Optimization of binder addition and compression load for pelletization of wheat straw using response surface methodology. Int. J. Agric. Biol. Eng. 2014, 7, 67–78. [Google Scholar]
The Name of Parameters | Date |
---|---|
Length × Width × Height | 3500 × 1500 × 2200 mm |
Number of die holes | 60 |
Number of press rollers | 2 |
Diameter of ring die hole | 27 mm |
Length of ring die hole | 168 mm |
Inner diameter of ring die | 740 mm |
Diameter of press roller | 320 mm |
The density of briquette | 0.8~1.3 g/cm3 |
The length of briquette | 50~100 mm |
Productivity | 1000~2000 kg/h |
Spindle speed | 165 r/min |
Factors | ||||
---|---|---|---|---|
Levels | A % | B °C | C mm | D R/min |
1 | 25 | 90 | 4 | 180 |
0 | 20 | 85 | 3 | 165 |
−1 | 15 | 80 | 2 | 150 |
Factors | Variables | |||||
---|---|---|---|---|---|---|
Test No. | A % | B °C | C mm | D r/min | Y1 g/cm3 | Y2 % |
1 | 15 | 90 | 3 | 165 | 0.963 | 55 |
2 | 15 | 85 | 3 | 180 | 1.027 | 64 |
3 | 15 | 85 | 4 | 165 | 0.979 | 56 |
4 | 15 | 85 | 3 | 150 | 0.912 | 52 |
5 | 15 | 80 | 3 | 165 | 0.881 | 44 |
6 | 15 | 85 | 2 | 165 | 0.821 | 46 |
7 | 20 | 90 | 3 | 150 | 0.919 | 50 |
8 | 20 | 90 | 2 | 165 | 0.855 | 49 |
9 | 20 | 85 | 3 | 165 | 1.132 | 74 |
10 | 20 | 90 | 3 | 180 | 1.009 | 62 |
11 | 20 | 85 | 3 | 165 | 1.145 | 76 |
12 | 20 | 85 | 3 | 165 | 1.168 | 69 |
13 | 20 | 85 | 2 | 150 | 0.902 | 50 |
14 | 20 | 80 | 4 | 165 | 0.969 | 55 |
15 | 20 | 85 | 3 | 165 | 1.107 | 68 |
16 | 20 | 80 | 3 | 150 | 0.928 | 49 |
17 | 20 | 85 | 2 | 180 | 1.075 | 64 |
18 | 20 | 85 | 3 | 165 | 1.109 | 78 |
19 | 20 | 90 | 4 | 165 | 0.985 | 56 |
20 | 20 | 80 | 3 | 180 | 1.018 | 66 |
21 | 20 | 80 | 2 | 165 | 0.872 | 42 |
22 | 20 | 85 | 4 | 180 | 1.035 | 62 |
23 | 20 | 85 | 4 | 150 | 0.945 | 53 |
24 | 25 | 90 | 3 | 165 | 1.014 | 62 |
25 | 25 | 85 | 4 | 165 | 0.965 | 53 |
26 | 25 | 85 | 3 | 150 | 1.091 | 69 |
27 | 25 | 85 | 2 | 165 | 0.858 | 52 |
28 | 25 | 80 | 3 | 165 | 1.012 | 60 |
29 | 25 | 85 | 3 | 180 | 1.020 | 66 |
Relaxed Density (Y1) | Impact Resistance (Y2) | |||||
---|---|---|---|---|---|---|
Std Err | p Value | Std Err | p Value | |||
Intercept | 1.13 | 0.0212 | 0.0005 | 73 | 2.03 | 0.0002 |
A | 0.0314 | 0.0137 | 0.0375 | 3.75 | 1.31 | 0.0127 |
B | 0.0054 | 0.0137 | 0.698 | 1.5 | 1.31 | 0.2723 |
C | 0.0412 | 0.0137 | 0.0092 | 2.67 | 1.31 | 0.0616 |
D | 0.0406 | 0.0137 | 0.0102 | 5.08 | 1.31 | 0.0017 |
AB | −0.02 | 0.0237 | 0.4126 | −2.25 | 2.27 | 0.3391 |
AC | −0.0127 | 0.0237 | 0.5988 | −2.25 | 2.27 | 0.3391 |
AD | −0.0465 | 0.0237 | 0.0698 | −3.75 | 2.27 | 0.1213 |
BC | 0.0083 | 0.0237 | 0.7328 | −1.5 | 2.27 | 0.5201 |
BD | 0 | 0.0237 | 1 | −1.25 | 2.27 | 0.5911 |
CD | −0.0208 | 0.0237 | 0.3958 | −1.25 | 2.27 | 0.5911 |
A2 | −0.0838 | 0.0186 | 0.0005 | −7.33 | 1.79 | 0.0011 |
B2 | −0.0986 | 0.0186 | 0.0001 | −10.96 | 1.79 | <0.0001 |
C2 | −0.1191 | 0.0186 | <0.0001 | −12.46 | 1.79 | <0.0001 |
D2 | −0.0416 | 0.0186 | 0.0421 | −3.83 | 1.79 | 0.0498 |
Source | Sum of Squares | df | Mean Square | F-Value | p Value | |
---|---|---|---|---|---|---|
Model | 0.2129 | 14 | 0.0152 | 6.78 | 0.0005 | significant |
A | 0.0118 | 1 | 0.0118 | 5.28 | 0.0375 | |
B | 0.0004 | 1 | 0.0004 | 0.1569 | 0.698 | |
C | 0.0204 | 1 | 0.0204 | 9.1 | 0.0092 | |
D | 0.0198 | 1 | 0.0198 | 8.81 | 0.0102 | |
AB | 0.0016 | 1 | 0.0016 | 0.7131 | 0.4126 | |
AC | 0.0007 | 1 | 0.0007 | 0.2898 | 0.5988 | |
AD | 0.0086 | 1 | 0.0086 | 3.85 | 0.0698 | |
BC | 0.0003 | 1 | 0.0003 | 0.1213 | 0.7328 | |
BD | 0 | 1 | 0 | 0 | 1 | |
CD | 0.0017 | 1 | 0.0017 | 0.7675 | 0.3958 | |
A2 | 0.0456 | 1 | 0.0456 | 20.32 | 0.0005 | |
B2 | 0.0631 | 1 | 0.0631 | 28.1 | 0.0001 | |
C2 | 0.092 | 1 | 0.092 | 41 | <0.0001 | |
D2 | 0.0112 | 1 | 0.0112 | 5 | 0.0421 | |
Residual | 0.0314 | 14 | 0.0022 | |||
Lack of Fit | 0.0288 | 10 | 0.0029 | 4.4 | 0.0831 | not significant |
Pure Error | 0.0026 | 4 | 0.0007 | |||
Cor Total | 0.2443 | 28 |
Source | Sum of Squares | df | Mean Square | F-Value | p Value | |
---|---|---|---|---|---|---|
Model | 2304.79 | 14 | 164.63 | 7.96 | 0.0002 | significant |
A | 168.75 | 1 | 168.75 | 8.16 | 0.0127 | |
B | 27 | 1 | 27 | 1.31 | 0.2723 | |
C | 85.33 | 1 | 85.33 | 4.13 | 0.0616 | |
D | 310.08 | 1 | 310.08 | 15 | 0.0017 | |
AB | 20.25 | 1 | 20.25 | 0.9796 | 0.3391 | |
AC | 20.25 | 1 | 20.25 | 0.9796 | 0.3391 | |
AD | 56.25 | 1 | 56.25 | 2.72 | 0.1213 | |
BC | 9 | 1 | 9 | 0.4354 | 0.5201 | |
BD | 6.25 | 1 | 6.25 | 0.3023 | 0.5911 | |
CD | 6.25 | 1 | 6.25 | 0.3023 | 0.5911 | |
A2 | 348.83 | 1 | 348.83 | 16.87 | 0.0011 | |
B2 | 778.93 | 1 | 778.93 | 37.68 | <0.0001 | |
C2 | 1006.77 | 1 | 1006.77 | 48.7 | <0.0001 | |
D2 | 95.32 | 1 | 95.32 | 4.61 | 0.0498 | |
Residual | 289.42 | 14 | 20.67 | |||
Lack of Fit | 213.42 | 10 | 21.34 | 1.12 | 0.4957 | not significant |
Pure Error | 76 | 4 | 19 | |||
Cor Total | 2594.21 | 28 |
Parameter | Mean | Std. Dev. | R2 | Adj R2 | C.V.% | Adeq Precision |
---|---|---|---|---|---|---|
Relaxed density (Y1) | 0.9902 | 0.0474 | 0.8714 | 0.7429 | 4.78 | 8.4645 |
Impact resistance (Y2) | 58.69 | 4.55 | 0.8884 | 0.7769 | 7.75 | 8.8941 |
Relaxed Density Y1 (g/cm3) | Impact Resistance Y2 (%) | ||||
---|---|---|---|---|---|
Predictive Value | Actual Value | Error % | Predictive Value | Actual Value | Error % |
1.144 | 1.139 | 0.439 | 74.76 | 74 | 1.027 |
1.147 | −0.262 | 73 | 2.410 | ||
1.140 | 0.351 | 75 | −0.320 | ||
1.146 | −0.175 | 76 | −1.632 | ||
1.142 | 0.175 | 72 | 3.833 | ||
Average value | 1.143 | 0.1056 | 74 | 1.0636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhao, Y.; Tang, Z.; Ding, H.; Su, Z.; Ding, Z. Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance. Agriculture 2022, 12, 736. https://doi.org/10.3390/agriculture12050736
Chen S, Zhao Y, Tang Z, Ding H, Su Z, Ding Z. Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance. Agriculture. 2022; 12(5):736. https://doi.org/10.3390/agriculture12050736
Chicago/Turabian StyleChen, Shuren, Yunfei Zhao, Zhong Tang, Hantao Ding, Zhan Su, and Zhao Ding. 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance" Agriculture 12, no. 5: 736. https://doi.org/10.3390/agriculture12050736
APA StyleChen, S., Zhao, Y., Tang, Z., Ding, H., Su, Z., & Ding, Z. (2022). Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance. Agriculture, 12(5), 736. https://doi.org/10.3390/agriculture12050736