Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Development of the IoT Node
- The power management layer, which was designed using methodologies for minimizing power consumption;
- The interfacing layer, responsible for the connectivity of peripherals (sensors and actuators) with the system;
- The processing/controlling layer, responsible for the initial data processing;
- The connectivity layer, responsible for the data transmission to the cloud.
2.2. Reduction in Power Consumption
2.3. Sensors Supported
- Weather measurements: Temperature, humidity, atmospheric pressure, precipitation, wind speed, wind gust, wind direction, solar radiation, and UV index;
- Soil measurements: Moisture content, temperature, pH, and electrical conductivity;
- Water measurements: Temperature, pH, electrical conductivity, turbidity, TDS, water flow, and storage tank level.
2.4. Actuation
- Open or close an actuator;
- Enter the thresholds of an actuator to change its state (e.g., specific temperature and water level);
- Enable autonomous operation (e.g., applying precision irrigation).
2.5. Field Trials
3. Results
3.1. Evaluation of the Low-Cost Sensors’ Accurancy
3.2. Management of Stored Water
3.3. Water Quality Measurements for Decision Making According to Its Quality
3.4. Irrigation Scheduling
3.5. Energy Autonomy
4. Discussion
5. Conclusions
- A low-cost, low power consumption, fully autonomous system of IoT for irrigation scheduling using different water sources was developed and tested successfully;
- The easiness of setting up by incorporating low-cost sensors was proved in the presented applications;
- The presented applications proved the reliability, accuracy, and flexibility of the proposed configuration of the system;
- Low-cost solutions for automating field operations can be efficiently applied in the agricultural domain;
- Easy-to-use systems can used by small size and elderly farmers and enhance the resilience of the farms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Water Resource Issues and Agriculture. Available online: https://www.fao.org/3/T0800E/t0800e0a.htm (accessed on 1 May 2022).
- Jamroen, C.; Komkum, P.; Fongkerd, C.; Krongpha, W. An intelligent irrigation scheduling system using low-cost wireless sensor network toward sustainable and precision agriculture. IEEE Access 2020, 8, 172756–172769. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Abba, S.; Wadumi Namkusong, J.; Lee, J.A.; Liz Crespo, M. Design and performance evaluation of a low-cost autonomous sensor interface for a smart iot-based irrigation monitoring and control system. Sensors 2019, 19, 3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, R.S.; Julie, E.G.; Robinson, Y.H.; Raja, S.; Kumar, R.; Thong, P.H. Fuzzy logic based smart irrigation system using internet of things. J. Clean. Prod. 2020, 252, 119902. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.; Gupta, D.; De Albuquerque, V.H.C. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019, 31, 277–292. [Google Scholar] [CrossRef]
- Nguyen, D.C.H.; Ascough, J.C., II; Maier, H.R.; Dandy, G.C.; Andales, A.A. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environ. Model. Softw. 2017, 97, 32–45. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Ma, L.; Gui, D.; Xu, J.; Fang, Q.; Feng, G. Development of an irrigation scheduling software based on model predicted crop water stress. Comput. Electron. Agric. 2017, 143, 208–221. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libelium. Available online: https://www.libelium.com/ (accessed on 1 May 2022).
- iMETOS 3.3-METOS by Pessl Instruments. Available online: https://metos.at/imetos33/ (accessed on 1 May 2022).
- WatchDog 2000 Series Weather Stations. Available online: https://www.specmeters.com/weather-monitoring/weather-stations/2000-full-stations/ (accessed on 1 May 2022).
- NetSens. Available online: https://www.netsens.it/en/ (accessed on 1 May 2022).
- Radhakrishnan, V.; Wu, W. IoT technology for smart water system. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications, Exeter, UK, 28–30 June 2018. [Google Scholar]
- Xiaocong, M.; Jiao, Q.X.; Shaohong, S. An IoT-based system for water resources monitoring and management. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015. [Google Scholar]
- Ramesh, M.V.; Nibi, K.V.; Kurup, A.; Mohan, R.; Aiswarya, A.; Arsha, A.; Sarang, P.R. Water quality monitoring and waste management using IoT. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017. [Google Scholar]
- Gupta, K.; Kulkarni, M.; Magdum, M.; Baldawa, Y.; Patil, S. Smart water management in housing societies using IoT. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018. [Google Scholar]
- Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Hossain, M.S. IoT based real-time river water quality monitoring system. Procedia Comput. Sci. 2019, 155, 161–168. [Google Scholar] [CrossRef]
- Moreno, C.; Aquino, R.; Ibarreche, J.; Pérez, I.; Castellanos, E.; Álvarez, E.; Clark, B. RiverCore: IoT device for river water level monitoring over cellular communications. Sensors 2019, 19, 127. [Google Scholar] [CrossRef] [Green Version]
- Skoubris, E.; Hloupis, G. An Imaging Capable, Low Cost IoT Node for River Flood Phenomena. In Proceedings of the EGU General Assembly Conference Abstracts, Göttingen, Germany, 19–30 April 2021. [Google Scholar]
- Intro to Arduino. Available online: https://www.coursehero.com/file/35492169/02-Intro-to-Arduinopdf/ (accessed on 1 May 2022).
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Tisserye, B. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, N.; Singhal, S. Smart drip irrigation system using raspberry pi and arduino. In Proceedings of the International Conference on Computing, Communication & Automation, Washington, DC, USA, 15–16 May 2015. [Google Scholar]
- Toai, T.K.; Huan, V.M. Implementing the Markov Decision Process for Efficient Water Utilization with Arduino Board in Agriculture. In Proceedings of the 2019 International Conference on System Science and Engineering, Dong Hoi City, Vietnam, 20–21 July 2019. [Google Scholar]
- Jha, R.K.; Kumar, S.; Joshi, K.; Pandey, R. Field monitoring using IoT in agriculture. In Proceedings of the 2017 International conference on intelligent computing, instrumentation and control technologies, Kannur, Kerala, India, 6–7 July 2017. [Google Scholar]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sens. J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- Wang, Y.; Rajib, S.S.M.; Collins, C.; Grieve, B. Low-cost turbidity sensor for low-power wireless monitoring of fresh-water courses. IEEE Sens. J. 2018, 18, 4689–4696. [Google Scholar] [CrossRef] [Green Version]
- Viani, F.; Bertolli, M.; Salucci, M.; Polo, A. Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sens. J. 2017, 17, 4299–4309. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.; Soto-Valles, F. Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef] [Green Version]
- Prathibha, S.R.; Hongal, A.; Jyothi, M.P. IoT based monitoring system in smart agriculture. In Proceedings of the 2017 international conference on recent advances in electronics and communication technology, Bangalore, India, 16–17 March 2017. [Google Scholar]
- Feng, X.; Yan, F.; Liu, X. Study of wireless communication technologies on Internet of Things for precision agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar] [CrossRef]
- Hydrousa Project. Available online: https://www.hydrousa.org (accessed on 1 May 2022).
- Chan, K.; Schillereff, D.N.; Baas, A.C.; Chadwick, M.A.; Main, B.; Mulligan, M.; Thompson, J. Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Prog. Phys. Geogr. Earth Environ. 2021, 45, 305–338. [Google Scholar] [CrossRef]
- Sami, M.; Khan, S.Q.; Khurram, M.; Farooq, M.U.; Anjum, R.; Aziz, S.; Qureshi, R.; Sadak, F. A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy 2022, 12, 212. [Google Scholar] [CrossRef]
- Bauder, A.; Waskom, M.; Sutherland, L.; Davis, G.; Follett, H.; Soltanpour, N. Irrigation Water Quality Criteria; Colorado State University Extension: Fort Collins, CO, USA, 2011. [Google Scholar]
- Agriculture and Agri-Food Canada, Prairie Farm Rehabilitation Administration, Irrigation and Salinity. Available online: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/ba3468a2a8681f69872569d60073fde1/42131e74693dcd01872572df00629626/$file/irrsalin.pdf (accessed on 25 June 2022).
- Latest Condition in Trikala. Available online: https://penteli.meteo.gr/stations/trikala (accessed on 1 May 2022).
- Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Available online: https://www.fao.org/3/x0490e/x0490e00.htm (accessed on 1 May 2022).
Date | pH Industrial | pH Low Cost | pH Difference | Temperature Industrial | Temperature Low Cost | Temperature Difference | ||||
---|---|---|---|---|---|---|---|---|---|---|
10 September 2021 | 6.61 | a | 6.80 | b | 0.19 | 25.63 | a | 26.20 | a | 0.57 |
11 September 2021 | 6.58 | a | 6.80 | b | 0.22 | 26.18 | a | 27.00 | a | 0.82 |
12 September 2021 | 6.52 | a | 6.70 | b | 0.18 | 26.17 | a | 27.10 | b | 0.93 |
13 September 2021 | 6.52 | a | 6.70 | b | 0.18 | 26.11 | a | 26.90 | a | 0.79 |
14 September 2021 | 6.53 | a | 6.70 | b | 0.17 | 25.93 | a | 26.70 | a | 0.77 |
15 September 2021 | 6.53 | a | 6.70 | b | 0.17 | 26.43 | a | 27.30 | b | 0.87 |
16 September 2021 | 6.48 | a | 6.60 | b | 0.12 | 27.32 | a | 28.50 | b | 1.18 |
17 September 2021 | 6.43 | a | 6.60 | b | 0.17 | 27.71 | a | 29.30 | b | 1.59 |
18 September 2021 | 6.42 | a | 6.60 | b | 0.18 | 28.39 | a | 29.60 | b | 1.21 |
19 September 2021 | 6.40 | a | 6.50 | b | 0.10 | 28.77 | a | 30.10 | b | 1.33 |
20 September 2021 | 6.37 | a | 6.50 | b | 0.13 | 29.40 | a | 30.60 | b | 1.20 |
21 September 2021 | 6.30 | a | 6.40 | b | 0.10 | 29.21 | a | 30.70 | b | 1.49 |
22 September 2021 | 6.30 | a | 6.40 | b | 0.10 | 28.26 | a | 29.30 | b | 1.04 |
23 September 2021 | 6.17 | a | 6.10 | a | 0.07 | 24.65 | a | 25.30 | a | 0.65 |
24 September 2021 | 6.11 | a | 6.10 | a | 0.01 | 25.77 | a | 26.90 | b | 1.13 |
25 September 2021 | 6.52 | a | 6.60 | a | 0.08 | 25.82 | a | 27.60 | b | 1.78 |
26 September 2021 | 6.41 | a | 6.40 | a | 0.01 | 25.60 | a | 26.30 | a | 0.70 |
27 September 2021 | 6.45 | a | 6.40 | a | 0.05 | 24.70 | a | 25.50 | a | 0.80 |
28 September 2021 | 6.57 | a | 6.60 | a | 0.03 | 23.83 | a | 24.40 | a | 0.57 |
29 September 2021 | 6.73 | a | 6.80 | a | 0.07 | 22.91 | a | 23.40 | a | 0.49 |
30 September 2021 | 6.74 | a | 6.80 | a | 0.06 | 22.21 | a | 22.50 | a | 0.29 |
1 October 2021 | 6.75 | a | 6.80 | a | 0.05 | 22.02 | a | 22.50 | a | 0.48 |
2 October 2021 | 6.79 | a | 6.80 | a | 0.01 | 21.94 | a | 22.20 | a | 0.26 |
3 October 2021 | 6.75 | a | 6.80 | a | 0.05 | 22.44 | a | 22.90 | a | 0.46 |
4 October 2021 | 6.61 | a | 6.70 | b | 0.09 | 22.25 | a | 22.60 | a | 0.35 |
5 October 2021 | 6.47 | a | 6.50 | a | 0.03 | 22.45 | a | 22.70 | a | 0.25 |
6 October 2021 | 6.54 | a | 6.50 | a | 0.04 | 23.29 | a | 23.60 | a | 0.31 |
7 October 2021 | 6.67 | a | 6.70 | a | 0.03 | 24.22 | a | 24.50 | a | 0.28 |
8 October 2021 | 6.79 | a | 6.80 | a | 0.01 | 24.59 | a | 25.00 | a | 0.41 |
9 October 2021 | 6.80 | a | 6.80 | a | 0.00 | 23.85 | a | 23.90 | a | 0.05 |
10 October 2021 | 6.66 | a | 6.70 | a | 0.04 | 22.50 | a | 22.70 | a | 0.20 |
Average | 6.53 | a | 6.61 | a | 0.08 | 25.18 | a | 25.93 | a | 0.75 |
Date | Average Temperature (Low-Cost Station) | Average Temperature (High-End Station) | Temperature Difference | Total Rain (Low-Cost Station) | Total Rain (High-End Station) | Total Rain Difference | ||||
---|---|---|---|---|---|---|---|---|---|---|
11 December 2020 | 7.00 | 7.10 | 0.10 | 6.00 | 5.00 | 1.00 | ||||
12 December 2020 | 8.30 | 8.10 | 0.20 | 0.90 | 1.60 | 0.70 | ||||
13 December 2020 | 9.40 | 9.10 | 0.30 | 8.10 | 7.60 | 0.50 | ||||
14 December 2020 | 11.50 | 11.20 | 0.30 | 0.00 | 0.00 | 0.00 | ||||
15 December 2020 | 10.70 | 10.60 | 0.10 | 0.00 | 0.00 | 0.00 | ||||
16 December 2020 | 8.80 | 8.90 | 0.10 | 0.00 | 0.00 | 0.00 | ||||
17 December 2020 | 10.50 | 10.10 | 0.40 | 0.00 | 0.00 | 0.00 | ||||
18 December 2020 | 8.30 | 8.90 | 0.60 | 0.00 | 0.00 | 0.00 | ||||
19 December 2020 | 9.50 | 9.10 | 0.40 | 0.00 | 0.00 | 0.00 | ||||
20 December 2020 | 10.50 | 10.20 | 0.30 | 0.00 | 0.00 | 0.00 | ||||
21 December 2020 | 10.20 | 10.10 | 0.10 | 0.30 | 0.60 | 0.30 | ||||
22 December 2020 | 9.90 | 10.00 | 0.10 | 0.00 | 0.00 | 0.00 | ||||
23 December 2020 | 8.20 | 8.50 | 0.30 | 0.00 | 0.00 | 0.00 | ||||
24 December 2020 | 8.50 | 9.10 | 0.60 | 0.00 | 0.00 | 0.00 | ||||
25 December 2020 | 12.00 | 12.80 | 0.80 | 0.00 | 0.00 | 0.00 | ||||
26 December 2020 | 11.90 | 12.90 | 1.00 | 2.10 | 2.40 | 0.30 | ||||
27 December 2020 | 10.60 | 10.70 | 0.10 | 2.10 | 1.80 | 0.30 | ||||
28 December 2020 | 10.30 | 10.10 | 0.20 | 1.20 | 1.00 | 0.20 | ||||
29 December 2020 | 12.60 | 13.10 | 0.50 | 0.00 | 0.00 | 0.00 | ||||
30 December 2020 | 11.10 | 11.50 | 0.40 | 0.00 | 0.00 | 0.00 | ||||
31 December 2020 | 11.10 | 11.00 | 0.10 | 6.60 | 7.00 | 0.40 | ||||
1 January 2021 | 9.30 | 9.10 | 0.20 | 0.00 | 0.00 | 0.00 | ||||
2 January 2021 | 8.00 | 7.80 | 0.20 | 4.20 | 4.80 | 0.60 | ||||
3 January 2021 | 9.90 | 9.60 | 0.30 | 27.60 | 28.00 | 0.40 | ||||
4 January 2021 | 8.50 | 8.20 | 0.30 | 40.80 | 42.20 | 1.40 | ||||
5 January 2021 | 8.00 | 8.60 | 0.60 | 0.30 | 0.20 | 0.10 | ||||
6 January 2021 | 8.60 | 8.50 | 0.10 | 0.30 | 0.20 | 0.10 | ||||
7 January 2021 | 10.00 | 10.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
8 January 2021 | 15.50 | 15.70 | 0.20 | 0.00 | 0.00 | 0.00 | ||||
9 January 2021 | 15.90 | 15.70 | 0.20 | 0.60 | 0.80 | 0.20 | ||||
10 January 2021 | 13.10 | 12.80 | 0.30 | 2.70 | 3.00 | 0.30 | ||||
11 January 2021 | 12.90 | 12.70 | 0.20 | 38.70 | 39.60 | 0.90 | ||||
Average | 10.33 | a | 10.37 | a | 0.04 | 142.50 (Sum) | a | 145.80 (Sum) | a | 3.30 (Sum) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiropoulos, Z.; Skoubris, E.; Fountas, S.; Gravalos, I.; Gemtos, T. Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture 2022, 12, 1044. https://doi.org/10.3390/agriculture12071044
Tsiropoulos Z, Skoubris E, Fountas S, Gravalos I, Gemtos T. Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture. 2022; 12(7):1044. https://doi.org/10.3390/agriculture12071044
Chicago/Turabian StyleTsiropoulos, Zisis, Evangelos Skoubris, Spyros Fountas, Ioannis Gravalos, and Theofanis Gemtos. 2022. "Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources" Agriculture 12, no. 7: 1044. https://doi.org/10.3390/agriculture12071044
APA StyleTsiropoulos, Z., Skoubris, E., Fountas, S., Gravalos, I., & Gemtos, T. (2022). Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture, 12(7), 1044. https://doi.org/10.3390/agriculture12071044