Mechanical Characteristics of Rice Root–Soil Complex in Rice–Wheat Rotation Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Test Samples
2.2. Testing Indicators and Methods
2.2.1. Particle Analysis Test
- Xs—the percentage of sample mass smaller than a certain particle size to the total mass of the sample, %.
- As—sample mass smaller than a certain particle size, g.
- Bs—the quality of the sample taken when analyzed with a fine screen; the total mass of the sample is determined when analyzed with a rough screen, g.
- dx—sample mass with particle size less than 2 mm as a percentage of total sample mass, %.
2.2.2. Shear Test of Root–Soil Composite
- ΔLs—shear displacement of the Ls-root–soil composite sample, 0.01 mm.
- ns—number of handwheel turns of the straight shearing instrument.
- Rs—dial gauge reading of the direct shearing instrument, 0.01 mm.
- τs—root–soil composite shear strength, kPa.
- σs—normal stress acting on the root–soil complex, kPa.
- φs—internal friction angle of root–soil complex, °.
- Cs—cohesion of root–soil complex, kPa.
3. Experimental Design
4. Results and Discussion
4.1. Particle Analysis of Sample Soil
4.2. Analysis of Shear Strength of the Root–Soil Composite
4.2.1. Range Analysis
4.2.2. Variance Analysis
4.2.3. Shear Stress and Shear Deformation
4.2.4. Shear Strength of Root–Soil Composite and Its Relationship with Root Content
4.2.5. Shear Strength of the Root–Soil Composite and its Relationship with Water Content
5. Conclusions
- (1)
- The influence of water content and bulk weight on the key indexes Cs and φs of shear strength of the root–soil composite first decreased and then increased, with extreme points and minimum values. The influence of root ratio on the key indexes Cs and φs of shear strength of the root–soil composite is mutually exclusive, i.e., the deterioration of φs occurred when the influencing factors were in favor of Cs and vice versa.
- (2)
- In the shear strength test of the root–soil composite, the main factors influencing Cs were root content, water content, error factor, and unit weight in turn. The main factors influencing φs were water content, root content, error factor, and unit weight in turn. The influence of bulk weight on the test index was not significant, while the water content and root content had significant influences on shear strength of the root–soil composite.
- (3)
- The indoor direct shear and fast shear tests of the root–soil composite samples showed that the root system enhanced the axial pressure of the soil and significantly increased the cohesion. The increase of roots also increased the contact area between roots and soil and increased the amplitude of cohesion, but it had little effect on the internal friction angle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Li, H.W.; Wang, Q.J.; Gao, H.W.; Li, W.Y.; Zhang, X.M.; McGiffen, M. The adoption of conservation tillage in China. Ann. N. Y. Acad. Sci. 2010, 1195 (Suppl. S1), E96–E106. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, N.J.; Hu, Y.; Bloemertz, L.; He, J.; Li, H.; Greenwood, P. Conservation tillage and sustainable intensification of agriculture: Regional vs. global benefit analysis. Agric. Ecosyst. Environ. 2016, 216, 155–165. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, S.; Sun, Y.; Zhang, Y.; Li, H.; Liu, P.; Wang, X.; Wang, R.; Li, J. Conservation tillage improves soil water storage, spring maize (Zea mays L.) yield and WUE in two types of seasonal rainfall distributions. Soil Tillage Res. 2022, 215, 105237. [Google Scholar] [CrossRef]
- Araya, S.N.; Mitchell, J.P.; Hopmans, J.W.; Ghezzehei, T.A. Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage. Soil 2022, 8, 177–198. [Google Scholar] [CrossRef]
- Bilen, S.; Jacinthe, P.-A.; Shrestha, R.; Jagadamma, S.; Nakajima, T.; Kendall, J.R.A.; Doohan, T.; Lal, R.; Dick, W. Greenhouse gas fluxes in a no-tillage chronosequence in Central Ohio. Soil Tillage Res. 2022, 218, 105313. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, H.; Liang, A.; Li, L.; Yao, Q.; Xu, Y.; Liu, J.; Jin, J.; Liu, X.; Wang, G. Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant Soil 2022, 472, 207–223. [Google Scholar] [CrossRef]
- Xu, P.; Li, G.; Houlton, B.Z.; Ma, L.; Ai, D.; Zhu, L.; Luan, B.; Zhai, S.; Hu, S.; Chen, A.; et al. Role of Organic and Conservation Agriculture in Ammonia Emissions and Crop Productivity in China. Environ. Sci. Technol. 2022, 56, 2977–2989. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.a.; Wen, T.; Guo, X.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Forouhar, M. Effects of tillage systems on soil organic carbon and some soil physical properties. Land Degrad. Dev. 2022, 33, 1307–1320. [Google Scholar] [CrossRef]
- Malasli, M.Z.; Celik, A. Disc angle and tilt angle effects on forces acting on a single-disc type no-till seeder opener. Soil Tillage Res. 2019, 194, 104304. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Ahmad, R.; Jabbar, A.; Munir, H.; Hussain, M. Influence of Different No-till Techniques at Varying Heights of Standing Rice Stubbles on the Wheat Performance. Int. J. Agric. Biol. 2017, 19, 410–416. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordan, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerda, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice: Recent Developments and Future Research Needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Burak, E.; Dodd, I.C.; Quinton, J.N. Do root hairs of barley and maize roots reinforce soil under shear stress? Geoderma 2021, 383, 114740. [Google Scholar] [CrossRef]
- Feng, T.; Li, G.; Hu, W.; Chen, X.; Zhao, P. Experimental study on the influence of arborwood root on the shear strength of root-soil composite. Chin. J. Appl. Mech. 2018, 35, 517–523. [Google Scholar] [CrossRef]
- Meijer, G.J. A generic form of fibre bundle models for root reinforcement of soil. Plant Soil 2021, 468, 45–65. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Yu, D.; Li, S.; Yang, Y. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin. Chin. J. Rock Mech. Eng. 2018, 37, 1270–1280. [Google Scholar] [CrossRef]
- Zheng, L.; Luo, X.; Zeng, S.; Wang, Z.; Liu, C.; Qi, X. Shear characteristics of rice root-soil composite. Trans. Chin. Soc. Agric. Mach. 2017, 48, 63–71. [Google Scholar]
- Meng, S.; Zhao, G.; Yang, Y.; Ye, X. Impact of Plant Root Morphology on Rooted-Soil Shear Resistance Using Triaxial Testing. Adv. Civ. Eng. 2020, 2020, 8825828. [Google Scholar] [CrossRef]
- Hou, L.; Gao, W.; der Bom, F.; Weng, Z.; Doolette, C.L.; Maksimenko, A.; Hausermann, D.; Zheng, Y.; Tang, C.; Lombi, E.; et al. Use of X-ray tomography for examining root architecture in soils. Geoderma 2022, 405, 115405. [Google Scholar] [CrossRef]
- Fan, C.-C.; Lu, J.Z.; Chen, H.H. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. Catena 2021, 207, 105593. [Google Scholar] [CrossRef]
- Ji, X.; Chen, L.; Zhang, A. Anchorage properties at the interface between soil and roots with branches. J. For. Res. 2016, 28, 83–93. [Google Scholar] [CrossRef]
- Liu, X.P.; Zhang, W.J.; Wang, X.Y.; Cai, Y.J.; Chang, J.G. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia. Tree Physiol. 2015, 35, 1343–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.-C.; Tsai, M.-H. Spatial distribution of plant root forces in root-permeated soils subject to shear. Soil Tillage Res. 2016, 156, 1–15. [Google Scholar] [CrossRef]
- Kokutse, N.K.; Temgoua, A.G.T.; Kavazović, Z. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecol. Eng. 2016, 86, 146–153. [Google Scholar] [CrossRef]
- Roue, J.; Chauvet, H.; Brunel-Michac, N.; Bizet, F.; Moulia, B.; Badel, E.; Legue, V. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots. J. Exp. Bot. 2020, 71, 126–137. [Google Scholar] [CrossRef]
- Alam, M.; Jiang, Y.-J.; Umar, M.; Su, L.-J.; Rahman, M.; Ullah, F. Influence of drainage and root biomass on soil mechanical behavior in triaxial tests. Acta Geotech. 2021, 17, 2875–2893. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, L.; Melo, L.B.B.; Azevedo, R.P.; Araujo, B.C.L.; Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in no-tillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Gao, H.; Gong, L. Experimental study on the mechanism of cutting and digging corn rootstalk for no-tillage planter. Trans. Chin. Soc. Agric. Mach 2007, 9, 63–66. [Google Scholar]
- Yin, Z.-Y.; Jin, Y.-F.; Shen, J.S.; Hicher, P.-Y. Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 70–94. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Z.; Zhao, T. Sample size determination in geotechnical site investigation considering spatial variation and correlation. Can. Geotech. J. 2019, 56, 992–1002. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, F.; Gao, C.; He, N.; Liu, X. Standard for Geotechnical Test Methods; China Planning Press: Beijing, China, 2019. [Google Scholar]
- Sui, Z.; Yi, W.; Lu, Y.; Deng, L. Experimental and Numerical Simulation Study on the Shear Strength Characteristics of Magnolia multiflora Root-Soil Composites. Adv. Civ. Eng. 2021, 2021, 6642594. [Google Scholar] [CrossRef]
- Temgoua, A.G.T.; Kokutse, N.K.; Kavazović, Z. Influence of forest stands and root morphologies on hillslope stability. Ecol. Eng. 2016, 95, 622–634. [Google Scholar] [CrossRef]
- Feng, B.; Zong, Q.; Cai, H.; Chen, Z.; Wang, J. Calculation of increased soil shear strength from desert plant roots. Arab. J. Geosci. 2019, 12, 525. [Google Scholar] [CrossRef]
- Lian, B.; Peng, J.; Zhan, H.; Wang, X. Mechanical response of root-reinforced loess with various water contents. Soil Tillage Res. 2019, 193, 85–94. [Google Scholar] [CrossRef]
- Tan, H.; Chen, F.; Chen, J.; Gao, Y. Direct shear tests of shear strength of soils reinforced by geomats and plant roots. Geotext. Geomembr. 2019, 47, 780–791. [Google Scholar] [CrossRef]
- Veylon, G.; Ghestem, M.; Stokes, A.; Bernard, A. Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can. Geotech. J. 2015, 52, 1839–1849. [Google Scholar] [CrossRef]
Depth/cm | Solidness/kPa | Moisture Content/% | Wet Volume Weight/g·cm−3 |
---|---|---|---|
0–10 | 655 | 37.76 | 1.55 |
10–20 | 1400 | 30.27 | 1.79 |
20–30 | 1775 | 22.96 | 1.99 |
Factor | Level | ||
---|---|---|---|
1 | 2 | 3 | |
Water content (A)/% | 20 (A1) | 30 (A2) | 40 (A3) |
Volume weight (B)/g·cm−3 | 1.5 (B1) | 1.7 (B2) | 1.9 (B3) |
Root content (C)/% | 0.5 (C1) | 1.1 (C2) | 2.1 (C3) |
Test No. | Factors of the Test | Test Index | ||||
---|---|---|---|---|---|---|
A | B | C | D | Cs | φs | |
(Water Content/%) | (Volume Weight/g·cm−3) | (Root Content/%) | (Blank) | (Cohesion)/kPa | (Friction Angle)/° | |
1 | 1 (20) | 1 (1.5) | 1 (0.5) | 1 | ||
2 | 1 | 2 (1.7) | 2 (1.1) | 2 | ||
3 | 1 | 3 (1.9) | 3 (2.1) | 3 | ||
4 | 2 (30) | 1 | 2 | 3 | ||
5 | 2 | 2 | 3 | 1 | ||
6 | 2 | 3 | 1 | 2 | ||
7 | 3 (40) | 1 | 3 | 2 | ||
8 | 3 | 2 | 1 | 3 | ||
9 | 3 | 3 | 2 | 1 |
Scheme. | Coarse Grain Group | Fine Grain Group | |||||
---|---|---|---|---|---|---|---|
Sand | Powder Particle | Clay Particles | |||||
Coarse | Medium | Fine | Extremely Fine | ||||
1~0.5 | 0.5~0.25 | 0.25~0.1 | 0.1~0.05 | 0.05~0.01 | 0.01~0.002 | <0.002 | |
1 (0–10) | 1.98 | 6.46 | 21.56 | 16 | 25 | 13 | 16 |
2 (10–20) | 1.24 | 4.06 | 25.2 | 19.5 | 25 | 16.5 | 8.5 |
3 (20–30) | 0.42 | 0.22 | 21.36 | 16 | 30 | 18 | 14 |
Test No. | Factors of the Test | |||||
---|---|---|---|---|---|---|
A (Water Content/%) | B (Volume Weight/g·cm−3) | C (Root Content/%) | D (Blank) | Cs (Cohesion)/kPa | φs (Friction Angle)/° | |
CsK1 | 39.2680 | 8.4160 | −3.2340 | 6.9300 | ||
CsK2 | −9.2400 | 8.3160 | −12.9360 | 1.4860 | ||
CsK3 | 0.5620 | 13.8580 | 46.7600 | 22.1740 | ||
Csk1 | 13.0893 | 2.8053 | −1.0780 | 2.3100 | ||
Csk2 | −3.0800 | 2.7720 | −4.3120 | 0.4953 | ||
Csk3 | 0.1873 | 4.6193 | 15.5867 | 7.3913 | ||
Cs range R | 16.1693 | 1.8473 | 19.8987 | 6.8960 | ||
Priority order | C > A > D > B | |||||
φs K1 | 67.63 | 71.29 | 69.44 | 71.89 | ||
φs K2 | 66.47 | 69.14 | 73.70 | 69.77 | ||
φs K3 | 75.76 | 69.43 | 66.72 | 68.20 | ||
φs k1 | 22.54 | 23.76 | 23.15 | 23.96 | ||
φs k2 | 22.16 | 23.05 | 24.57 | 23.26 | ||
φs k3 | 25.25 | 23.14 | 22.24 | 22.73 | ||
φs range R | 3.10 | 0.72 | 2.33 | 1.23 | ||
Priority order | A > C > D > B |
Test No. | Factors of the Test | Index of the Test | ||||
---|---|---|---|---|---|---|
A (Water Content)/% | B (Volume Weight)/g·cm−3 | C (Root Content)/% | D (Blank) | Cs (Cohesion)/kPa | φs (Friction Angle)/° | |
(Cs k1)2 | 1541.98 | 70.83 | 10.46 | 48.02 | ∑Cs = 30.59 | |
(Cs k2)2 | 85.38 | 69.16 | 167.34 | 2.21 | ||
(Cs k3)2 | 0.32 | 192.04 | 2186.50 | 491.69 | = 5.10 | |
Square of deviance of Cs is S | 438.58 | 6.70 | 684.13 | 76.67 | ||
Freedom of Cs is f | 2 | 2 | 2 | 2 | ||
Variance of Cs is V | 219.29 | 3.35 | 342.06 | 38.33 | ||
Fj value of Cs | 5.72 | 0.09 | 9.02 | |||
Obvious | * (0.25) | NS | ** (0.10) | |||
(φs k1) | 4573.58 | 5082.11 | 4822.00 | 5168.43 | ∑φs = 209.87 | |
(φs k2) | 4418.86 | 4780.816 | 5432.37 | 4868.31 | ||
(φs k3) | 5740.22 | 4821.18 | 4451.80 | 4651.52 | = 34.98 | |
Square of deviance of φs is S | 17.09 | 0.90 | 8.26 | 2.29 | ||
Freedom of φs is f | 2 | 2 | 2 | 2 | ||
Variance of φs is V | 8.55 | 0.45 | 4.13 | 1.14 | ||
Fj value of φs | 7.48 | 0.40 | 3.61 | |||
obvious | * (0.25) | NS | * (0.25) | |||
F0.25(2,2) | 3 | |||||
F0.10(2,2) | 9 |
Test No. | Factors of the Test | Test Index | ||
---|---|---|---|---|
Water Content/% | Root Content/% | Cohesion Cs/kPa | Friction Angle φs/° | |
a1 | 20 | 2.1 | 18.11 | 22.34 |
a2 | 20 | 1.1 | 1.85 | 23.46 |
a3 | 20 | 0.5 | 10.44 | 21.06 |
b1 | 30 | 2.1 | 7.39 | 21.45 |
b2 | 30 | 1.1 | −18.48 | 25.17 |
b3 | 30 | 0.5 | 16.01 | 27.34 |
c1 | 40 | 2.1 | 8.32 | 24.80 |
c2 | 40 | 1.1 | −7.85 | 26.79 |
c3 | 40 | 0.5 | −19.40 | 27.11 |
Water Content/% | Root Content/% | Cs/kPa | tanφs | φs/° | R2 |
---|---|---|---|---|---|
20 | 0.5 | 10.440 | 0.385 | 21.06 | 0.999 |
1.1 | 1.848 | 0.434 | 23.46 | 0.997 | |
2.1 | 18.110 | 0.411 | 22.34 | 0.984 | |
30 | 0.5 | 16.010 | 0.517 | 27.34 | 0.989 |
1.1 | −18.480 | 0.470 | 25.17 | 0.996 | |
2.1 | 7.392 | 0.393 | 21.45 | 0.978 | |
40 | 0.5 | 19.400 | 0.512 | 27.11 | 0.995 |
1.1 | −7.392 | 0.509 | 26.98 | 0.987 | |
2.1 | −6.468 | 0.471 | 25.22 | 0.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhao, H.; Bai, L.; Ma, S.; Zhang, X.; Li, H. Mechanical Characteristics of Rice Root–Soil Complex in Rice–Wheat Rotation Area. Agriculture 2022, 12, 1045. https://doi.org/10.3390/agriculture12071045
Zhu H, Zhao H, Bai L, Ma S, Zhang X, Li H. Mechanical Characteristics of Rice Root–Soil Complex in Rice–Wheat Rotation Area. Agriculture. 2022; 12(7):1045. https://doi.org/10.3390/agriculture12071045
Chicago/Turabian StyleZhu, Huibin, Haoran Zhao, Lizhen Bai, Shi’ao Ma, Xu Zhang, and Hui Li. 2022. "Mechanical Characteristics of Rice Root–Soil Complex in Rice–Wheat Rotation Area" Agriculture 12, no. 7: 1045. https://doi.org/10.3390/agriculture12071045
APA StyleZhu, H., Zhao, H., Bai, L., Ma, S., Zhang, X., & Li, H. (2022). Mechanical Characteristics of Rice Root–Soil Complex in Rice–Wheat Rotation Area. Agriculture, 12(7), 1045. https://doi.org/10.3390/agriculture12071045