Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Collection
3.2. Prediction Models
3.2.1. GRU Model
3.2.2. DBN Model
3.2.3. BiLSTM Model
3.3. Design of MRFO Based Parameter Optimization Technique
3.3.1. Chain Foraging
3.3.2. Cyclone Foraging
3.3.3. Somersault Foraging
3.4. Design of Weighted Voting Ensemble Model
4. Result Analysis
4.1. Proposed Model on Soil Nutrient Classification
4.2. Proposed Model on Soil pH Classification
4.3. Comparative Analysis with Existing Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, H.; Patel, D. A brief survey of data mining techniques applied to agricultural data. Int. J. Comput. Appl. 2014, 95, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e00198. [Google Scholar] [CrossRef]
- Ji, C.; Liu, H.; Cha, Z.; Lin, Q.; Feng, G. Spatial-Temporal Variation of N, P, and K Stoichiometry in Cropland of Hainan Island. Agriculture 2021, 12, 39. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Khademi, H.; Khayamim, F.; Zeraatpisheh, M.; Heung, B.; Scholten, T. A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties. Remote Sens. 2022, 14, 472. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Davenport, J.; Jabro, J. Assessment of hand held ion selective electrode technology for direct measurement of soil chemical properties. Commun. Soil Sci. Plant Anal. 2011, 32, 3077–3085. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, D.; Chen, G.; Wan, B.; Wang, S.; Yang, B. A neural network ensemble method for precision fertilization modeling. Math. Comput. Model. 2010, 51, 1375–1382. [Google Scholar] [CrossRef]
- Suchithra, M.S.; Pai, M.L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 2020, 7, 72–82. [Google Scholar] [CrossRef]
- Chambers, O. Machine Learning Strategy for Soil Nutrients Prediction Using Spectroscopic Method. Sensors 2021, 21, 4208. [Google Scholar]
- Wu, C.; Chen, Y.; Hong, X.; Liu, Z.; Peng, C. Evaluating soil nutrients of Dacrydium pectinatum in China using machine learning techniques. For. Ecosyst. 2020, 7, 30. [Google Scholar] [CrossRef]
- Rose, S.; Nickolas, S.; Sangeetha, S. Machine Learning and Statistical Approaches used in Estimating Parameters that Affect the Soil Fertility Status: A Survey. In Proceedings of the 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Karnataka, India, 16–18 August 2018; IEEE: New York, NY, USA, 2018; pp. 381–385. [Google Scholar]
- Rajamanickam, J. Predictive model construction for prediction of soil fertility using decision tree machine learning algorithm. INFOCOMP J. Comput. Sci. 2021, 20, 49–55. [Google Scholar]
- Rajamanickam, J.; Mani, S.D. Kullback chi square and Gustafson Kessel probabilistic neural network based soil fertility prediction. Concurr. Comput. Pract. Exp. 2021, 33, e6460. [Google Scholar] [CrossRef]
- Sirsat, M.S.; Cernadas, E.; Fernández-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput. Electron. Agric. 2018, 154, 120–133. [Google Scholar] [CrossRef]
- Ning, J.; Sheng, M.; Yi, X.; Wang, Y.; Hou, Z.; Zhang, Z.; Gu, X. Rapid evaluation of soil fertility in tea plantation based on near-infrared spectroscopy. Spectrosc. Lett. 2018, 51, 463–471. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yang, J. Forecasting of Significant Wave Height Based on Gated Recurrent Unit Network in the Taiwan Strait and Its Adjacent Waters. Water 2021, 13, 86. [Google Scholar] [CrossRef]
- Hinton, G.E. Deep belief network. Scholarpedia 2009, 4, 5947. [Google Scholar] [CrossRef]
- Sokkhey, P.; Okazaki, T. Development and Optimization of Deep Belief Networks Applied for Academic Performance Prediction with Larger Datasets. IEIE Trans. Smart Process. Comput. 2020, 9, 298–311. [Google Scholar] [CrossRef]
- Minh-Tuan, N.; Kim, Y.H. Bidirectional Long Short-Term Memory Neural Networks for Linear Sum Assignment Problems. Appl. Sci. 2019, 9, 3470. [Google Scholar] [CrossRef] [Green Version]
- Hemeida, M.G.; Ibrahim, A.A.; Mohamed, A.A.A.; Alkhalaf, S.; El-Dine, A.M.B. Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng. J. 2021, 12, 609–619. [Google Scholar] [CrossRef]
- Livieris, I.E.; Kanavos, A.; Tampakas, V.; Pintelas, P. A weighted voting ensemble self-labeled algorithm for the detection of lung abnormalities from X-rays. Algorithms 2019, 12, 64. [Google Scholar] [CrossRef] [Green Version]
Methods | PPV | TPR | Accuracy | F-Measure | Kappa |
---|---|---|---|---|---|
Organic Carbon-F | |||||
Low | 0.8846 | 1.0000 | 0.9804 | 0.9388 | - |
Medium | 0.8980 | 0.8302 | 0.9085 | 0.8627 | - |
High | 0.8974 | 0.9091 | 0.9020 | 0.9032 | - |
Average | 0.8933 | 0.9131 | 0.9303 | 0.9016 | 0.8277 |
Phosphorus-F | |||||
Average | 0.9493 | 0.9850 | 0.9412 | 0.9668 | 0.3341 |
Potassium-F | |||||
Low | 0.8302 | 0.9565 | 0.8543 | 0.8889 | - |
Medium | 0.8788 | 0.6304 | 0.8609 | 0.7342 | - |
High | 1.0000 | 0.9231 | 0.9934 | 0.9600 | - |
Average | 0.9030 | 0.8367 | 0.9029 | 0.8610 | 0.7080 |
Boron-F | |||||
Average | 0.9524 | 0.9600 | 0.9281 | 0.9562 | 0.3408 |
Soil (pH) | |||||
---|---|---|---|---|---|
Methods | PPV | TPR | Accuracy | F-Measure | Kappa |
SA | 0.7222 | 0.9286 | 0.9597 | 0.8125 | - |
HA | 0.9615 | 0.9036 | 0.9262 | 0.9317 | - |
MA | 0.8571 | 0.9000 | 0.9329 | 0.8780 | - |
SLA | 0.9091 | 0.8333 | 0.9799 | 0.8696 | - |
Average | 0.8625 | 0.8914 | 0.9497 | 0.8729 | 0.8364 |
Methods | Organic Carbon-F | Phosphorus-F | Potassium-F | Boron-F | Soil (pH) |
---|---|---|---|---|---|
ELM-TAN | 0.8104 | 0.8823 | 0.7189 | 0.8627 | 0.8859 |
ELM-SIN | 0.6732 | 0.8692 | 0.6274 | 0.8496 | 0.7114 |
ELM-TRI | 0.6470 | 0.8562 | 0.6470 | 0.8431 | 0.7852 |
ELM-HAR | 0.7320 | 0.8627 | 0.7385 | 0.8627 | 0.8523 |
ELM-GRBF | 0.8366 | 0.9000 | 0.7843 | 0.8823 | 0.8187 |
ISNpHC-WVE | 0.9303 | 0.9412 | 0.9029 | 0.9281 | 0.8729 |
Methods | Computation Time (s) |
---|---|
ELM-TAN | 32.65 |
ELM-SIN | 31.48 |
ELM-TRI | 31.06 |
ELM-HAR | 30.54 |
ELM-GRBF | 29.11 |
ISNpHC-WVE | 24.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escorcia-Gutierrez, J.; Gamarra, M.; Soto-Diaz, R.; Pérez, M.; Madera, N.; Mansour, R.F. Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques. Agriculture 2022, 12, 977. https://doi.org/10.3390/agriculture12070977
Escorcia-Gutierrez J, Gamarra M, Soto-Diaz R, Pérez M, Madera N, Mansour RF. Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques. Agriculture. 2022; 12(7):977. https://doi.org/10.3390/agriculture12070977
Chicago/Turabian StyleEscorcia-Gutierrez, José, Margarita Gamarra, Roosvel Soto-Diaz, Meglys Pérez, Natasha Madera, and Romany F. Mansour. 2022. "Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques" Agriculture 12, no. 7: 977. https://doi.org/10.3390/agriculture12070977
APA StyleEscorcia-Gutierrez, J., Gamarra, M., Soto-Diaz, R., Pérez, M., Madera, N., & Mansour, R. F. (2022). Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques. Agriculture, 12(7), 977. https://doi.org/10.3390/agriculture12070977