Biostimulant Effects of Waste Derived Biobased Products in the Cultivation of Ornamental and Food Plants
Abstract
:1. Introduction
2. SBS Composition and Properties
3. Demonstration of SBS Effects as Biostimulant/Photosensitizers in the Cultivation of Tomato, Bean, Euphorbia, Lantana and Hibiscus Plants
3.1. Tomato Solanum Lycopersicum
3.2. Red Pepper Capsicum Annuum, F1 Barocco
3.3. Bean Phaseolus Vulgaris
3.4. Euphorbia x lomi Rauh
3.5. Lantana Camara and L. sellowiana
3.6. Hibiscus Moscheutos L. Subsp. Hibiscus Palustris
4. Replicability of SBS Effects in the Cultivation of Other Food and Ornamental Plants
4.1. Murraya Paniculata L. Jacq
4.2. Tomato cv. Microtom, Grain cv. Abate and Tobacco cv. Burley
4.3. Zea Mays Maize
5. Other Effects of SBS in Agriculture: Healthy Plants and Food Crop Production
5.1. Spinacia Oleracea L. “Gigante d’Inverno”
5.2. Oilseed Rape Brassica napus L. cv. Columbus
6. SBS Economic and Environmental Benefits, and Perspectives for Agriculture and Horticulture
7. Results’ Summary and Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mordor Intelligence. Fertilizers Market–Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027). Available online: https://www.mordorintelligence.com/industry-reports/fertilizers-market (accessed on 1 May 2022).
- Bio-Based Industries. Amended Annual Work Plan and Budget 2017 for the Bio-Based Industries Joint Undertaking. Available online: https://www.bbieurope.eu/sites/default/files/awp_2017.pdf (accessed on 1 May 2022).
- Diffen. Chemical Fertilizer vs. Organic Fertilizer. Available online: https://www.diffen.com/difference/Chemical_Fertilizer_vs_Organic_Fertilizer#Cost (accessed on 1 May 2022).
- FAO. World Fertilizer Trends and Outlook to 2018. Available online: https://www.fao.org/3/a-i4324e.pdf (accessed on 1 May 2022).
- Eurostat. Agri-Environmental Indicator-Mineral Fertiliser Consumption. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_mineral_fertiliser_consumption (accessed on 1 May 2022).
- IFA. About Fertilizers. Available online: https://www.fertilizer.org/ (accessed on 1 May 2022).
- Sortino, O.; Dipasquale, M.; Montoneri, E.; Tomasso, L.; Perrone, D.G.; Vindrola, D.; Negre, M.; Piccone, G. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity. Waste Manag. 2012, 32, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Foged, H.L.; Flotats, X.; Blasi, A.B.; Palatsi, J.; Magri, A.; Schelde, K.M. Inventory of Manure Processing Activities in Europe. Technical Report No. I Concerning “Manure Processing Activities in Europe” to the European Commission, Directorate-General Environment. 2018. 138p. Available online: https://agro-technology-atlas.eu/docs/21010_technical_report_I_inventory.pdf (accessed on 1 May 2022).
- Ji, F.; McGlone, J.J.; Kim, S.W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J. Anim. Sci. 2006, 84, 2482–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindrichova, B.; Burketova, L.; Montoneri, E.; Francavilla, M. Biowaste-derived hydrolysates as plant disease suppressants for oilseed rape. J. Clean. Prod. 2018, 183, 335–342. [Google Scholar] [CrossRef]
- Jisa. Agricultural Biostimulants in the New European Fertiliser Regulation. Available online: https://www.fertilizantesyabonos.com/english/agricultural-biostimulants-in-the-new-european-fertiliser-regulation/on (accessed on 1 May 2022).
- EUR-LEX. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32019R1009 (accessed on 1 May 2022).
- Massa, D.; Lenzi, A.; Montoneri, E.; Ginepro, M.; Prisa, D.; Burchi, G. Plant response to biowaste soluble hydrolysates in hibiscus grown under limiting nutrient availability. J. Plant Nutr. 2017, 41, 396–409. [Google Scholar] [CrossRef]
- Montoneri, E. Municipal Waste Treatment, Technological Scale Up and Commercial Exploitation: The Case of Bio-Waste Lignin to Soluble Lignin-like Polymers. In Food Waste Reduction and Valorisation; Chapter 6; Morone, P., Papendiek, F., Tartiu, V.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Fascella, G.; Montoneri, E.; Ginepro, M.; Francavilla, M. Effect of urban biowaste derived soluble substances on growth, photosynthesis and ornamental value of Euphorbia x lomi. Sci. Hortic. 2015, 197, 90–98. [Google Scholar] [CrossRef]
- Fascella, G.; Montoneri, E.; Francavilla, M. Biowaste versus fossil sourced auxiliaries for plant cultivation: The Lantana case study. J. Clean. Prod. 2018, 185, 322–330. [Google Scholar] [CrossRef]
- Massa, D.; Prisa, D.; Montoneri, E.; Battaglini, D.; Ginepro, M.; Negre, M.; Burchi, G. Application of municipal biowaste derived products in Hibiscus cultivation: Effect on leaf gaseous exchange activity, and plant biomass accumulation and quality. Sci. Hortic. 2016, 205, 59–69. [Google Scholar] [CrossRef]
- Fascella, G.; Montoneri, E.; Rouphael, Y. Biowaste-derived Humic-like Substances Improve Growth and Quality of Orange Jasmine (Murraya paniculata L. Jacq.) Plants in Soilless Potted Culture. Resources 2021, 10, 80. [Google Scholar] [CrossRef]
- Shikata, M.; Ezura, H. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation. Methods Mol. Biol. 2016, 1363, 47–55. [Google Scholar]
- Sortino, O.; Montoneri, E.; Patanè, C.; Rosato, R.; Tabasso, S.; Ginepro, M. Benefits for agriculture and the environment from urban waste. Sci. Total Environ. 2014, 487C, 443–451. [Google Scholar] [CrossRef]
- Isagro SpA. Efficacia Biologica di Compost Forniti Dall’università di Torino. 2014, unpublished confidential report delivered to the author. Available online: www.isagro.com (accessed on 1 May 2022).
- Sortino, O.; Dipasquale, M.; Montoneri, E.; Tomasso, L.; Avetta, P.; Bianco Prevot, A. 90% yield increase of red pepper with unexpectedly low doses of compost soluble substances. Agron. Sustain. Dev. 2013, 33, 433–441. [Google Scholar] [CrossRef]
- Rovero, A.; Vitali, M.; Rosso, D.; Montoneri, E.; Chitarra, W.; Tabasso, S.; Ginepro, M.; Lovisolo, C. Sustainable maize production by urban biowaste products. Int. J. Agron. Agric. Res. 2015, 6, 75–91. [Google Scholar]
- Baglieria, A.; Cadilia, V.; Mozzetti Monterumici, C.; Gennari, M.; Tabasso, S.; Montoneri, E.; Nardi, S.; Negre, M. Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci. Hortic. 2014, 176, 194–199. [Google Scholar] [CrossRef]
- Padoan, E.; Montoneri, E.; Bordiglia, G.; Boero, V.; Ginepro, M.; Evon, P.; Vaca-Garcia, C.; Fascella, G.; Negre, M. Waste biopolymers for eco-friendly agriculture and safe food production. Coatings 2022, 12, 239. [Google Scholar] [CrossRef]
- Bianco Prevot, A.; Avetta, P.; Fabbri, D.; Laurenti, E.; Marchis, T.; Perrone, D.G.; Montoneri, E.; Boffa, V. Waste derived bio,-organic substances for light induced generation of reactive oxygenated species. ChemSuschem 2011, 4, 85–90. [Google Scholar] [CrossRef]
- Gomis, J.; Bianco Prevot, A.; Montoneri, E.; Gonzalez, M.C.; Amat, A.M.; Martire, D.O.; Arques, A.; Carlos, L. Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chem. Eng. J. 2014, 235, 236–243. [Google Scholar] [CrossRef]
- Montoneri, E.; Fabbri, G.; Quagliotto, P.L.; Baglieri, A.; Padoan, E.; Boero, V.; Negre, M. High molecular weight biosurfactants from mild chemical reactions of fermented municipal biowastes. ChemistrySelect 2020, 5, 2564–2576. [Google Scholar] [CrossRef]
- Burketova, L.; Trda, L.; Ott, P.G.; Valentova, O. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 2015, 33, 994–1004. [Google Scholar] [CrossRef]
- eBiochem. Wholesale 2,1,3-Benzothiadiazole. 2022. Available online: http://www.ebiochem.com/product/2-1-3-benzothiadiazole-71535 (accessed on 11 June 2022).
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Montoneri, E.; Mainero, D.; Boffa, V.; Perrone, D.G.; Montoneri, C. Biochemenergy: A project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. Int. J. Global Environ. Issues 2011, 11, 170–196. [Google Scholar] [CrossRef]
- Sheldon-Coulson, G.A. Production of Levulinic Acid in Urban Biorefineries. Master’s Thesis, Massachusetts Institute of Technology, Engineering Systems Division, Cambridge, MA, USA, 2011. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/68450/769021899-MIT.pdf?sequence¼2 (accessed on 11 June 2022).
- Ellen Macarthur Foundation. Cities in the Circular Economy: An Initial Exploration. 2017. Available online: https://ellenmacarthurfoundation.org/cities-in-the-circular-economy-an-initial-exploration (accessed on 20 June 2019).
- Made in China. Organic Fertilizer Price. Organic Fertilizer Price. Available online: https://www.made-in-china.com (accessed on 11 June 2022).
- Alibaba. Leonardite Humic Acid Fulvic Acid Fertilizer. 2022. Available online: https://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=leonardite+humic+acid+fulvic+acid+fertilizer (accessed on 11 June 2022).
- Ebay. Leonardite. 2022. Available online: https://www.ebay.it/sch/i.html?_from=R40&_trksid=p2380057.m570.l1313&_nkw=leonardite&_sacat=0 (accessed on 11 June 2022).
- Hazra, D.K.; Purkait, A. Role of biostimulant formulations in crop production: An overview. Int. J. Agric. Sci. Vet. Med. 2020, 8, 38–46. [Google Scholar]
- Marketsandmarkets. Biostimulants Market by Active Ingredients (Humic Substances, Seaweed Extracts, Microbial Amendments, Amino Acids), Mode of Application (Folier, Soil Treatment, Seed Treatment), Form (Liquid, and Dry), Crop Type, & by Region-Global Forecast to 2026. Available online: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=1081 (accessed on 11 June 2022).
- Bastioli, C. Bioplastics: An Italian Case Study of Bioeconomy in Italy. 2013. Available online: https://www.kyotoclub.org/docs/Bruxelles_060313_Bioplastics_Bastioli.pdf (accessed on 11 June 2022).
- Franzoso, F.; Tabasso, S.; Antonioli, D.; Montoneri, E.; Persico, P.; Laus, M.; Mendichi, R.; Negre, M. Films made from poly (vinyl alcohol-co-ethylene) and soluble biopolymers isolated from municipal biowaste. J. Appl. Polym. Sci. 2015, 132, 1301. [Google Scholar] [CrossRef]
- Franzoso, F.; Causone, D.; Tabasso, S.; Antonioli, D.; Montoneri, E.; Persico, P.; Laus, M.; Mendichi, R.; Negre, M. Films made from polyethylene-co-acrylic acid and soluble biopolymers sourced from agricultural and municipal biowaste. J. Appl. Polym. Sci. 2015, 132, 5803. [Google Scholar] [CrossRef]
- Franzoso, F.; Antonioli, D.; Montoneri, E.; Persico, P.; Tabasso, S.; Laus, M.; Mendichi, R.; Negre, M.; Vaca-Garcia, C. Films made from poly (vinyl alcohol-co-ethylene) and soluble biopolymers isolated from post-harvest tomato plant. J. Appl. Polym. Sci. 2015, 132, 6006. [Google Scholar]
- Franzoso, F.; Vaca-Garcia, C.; Rouilly, A.; Evon, P.; Montoneri, E.; Persico, P.; Mendichi, R.; Nisticò, R.; Francavilla, M. Extruded versus solvent cast blends of poly(vinyl alcohol-co-ethylene) and biopolymers isolated from municipal biowaste. J. Appl. Polym. Sci. 2016, 133, 43009. [Google Scholar] [CrossRef] [Green Version]
PFB | Ingredients |
---|---|
D | Digestate from anaerobic fermentation of unsorted food wastes |
CV | Compost of private gardening and public park trimming residues (V) |
CVD | Compost of D and V mix in 2/1 weight respective ratio |
CVDF | Compost of D, V and sewage sludge (F) mix in 5.5/3.5/1 respective ratio |
ETP | Exhausted tomato plants at the end of the crop harvesting season |
Si | Fe | Al | Mg | Ca | K | Na | Ash | |
---|---|---|---|---|---|---|---|---|
CVDF PFB | 6.27 ± 0.04 | 1.02 ± 0.01 | 1.06 ± 0.02 | 0.83 ± 0.01 | 3.23 ± 0.05 | 1.32 ± 0.03 | 0.07 ± 0.01 | 59.4 |
CVDF SBS | 0.92 ± 0.03 | 0.53 ± 0.02 | 0.44 ± 0.02 | 0.49 ± 0.01 | 2.59 ± 0.03 | 5.49 ± 0.04 | 0.15 ± 0.01 | 27.3 |
CVDF IR | 7.68 ± 0.06 | 1.23 ± 0.03 | 1.05 ± 0.01 | 1.15 ± 0.02 | 3.20 ± 0.03 | 1.32 ± 0.02 | 0.04 ± 0.01 | 77.6 |
D PFB | 3.46 ± 0.05 | 0.77 ± 0.03 | 0.40 ± 0.02 | 0.88 ± 0.02 | 7.16 ± 0.08 | 0.53 ± 0.03 | 0.22 ± 0.02 | 34.5 |
D SBS | 0.36 ± 0.03 | 0.16 ± 0.00 | 0.78 ± 0.04 | 0.18 ± 0.01 | 1.32 ± 0.05 | 9.15 ± 0.06 | 0.39 ± 0.01 | 15.4 |
D IR | 4.73 ± 0.03 | 0.48 ± 0.01 | 0.47 ± 0.06 | 1.07 ± 0.02 | 9.54 ± 0.05 | 3.44 ± 0.05 | 0.16 ± 0.01 | 49.0 |
CVD PFB | 10.70 ± 0.03 | 1.07 ± 0.02 | 0.71 ± 0.03 | 1.12 ± 0.01 | 4.27 ± 0.14 | 1.09 ± 0.03 | 0.08 ± 0.01 | 56.1 |
CVD SBS | 2.49 ± 0.04 | 0.88 ± 0.02 | 0.60 ± 0.06 | 0.93 ± 0.02 | 4.70 ± 0.08 | 3.76 ± 0.07 | 0.17 ± 0.01 | 28.3 |
CVD IR | 12.60 ± 0.05 | 0.95 ± 0.01 | 0.75 ± 0.03 | 1.13 ± 0.02 | 4.96 ± 0.05 | 2.13 ± 0.06 | 0.07 ± 0.01 | 56.8 |
CV PFB | 12.14 ± 0.07 | 1.03 ± 0.02 | 0.59 ± 0.01 | 1.67 ± 0.25 | 4.86 ± 0.61 | 1.18 ± 0.07 | 0.06 ± 0.01 | 57.1 |
CV SBS | 2.55 ± 0.01 | 0.77 ± 0.04 | 0.49 ± 0.04 | 1.13 ± 0.06 | 6.07 ± 0.38 | 3.59 ± 0.21 | 0.16 ± 0.01 | 27.9 |
CV IR | 15.04 ± 0.33 | 1.10 ± 0.05 | 0.67 ± 0.01 | 1.45 ± 0.01 | 4.19 ± 0.09 | 1.49 ± 0.02 | 0.06 ± 0.01 | 71.3 |
ETP PFB | 0.98 ± 0.03 | 0.30 ± 0.02 | 0.27 ± 0.02 | 0.42 ± 0.02 | 4.65 ± 0.03 | 3.30 ± 0.02 | 0.22 ± 0.01 | 20.2 |
ETP SBS | 0.22 ± 0.03 | 0.33 ± 0.02 | 0.34 ± 0.03 | 0.80 ± 0.04 | 2.10 ± 0.02 | 9.15 ± 0.06 | 0.24 ± 0.01 | 23.3 |
ETP IR | 0.85 ± 0.03 | 0.25 ± 0.01 | 0.17 ± 0.01 | 0.27 ± 0.01 | 4.41 ± 0.02 | 4.49 ± 0.06 | 0.15 ± 0.01 | 36.9 |
C | N | C/N | P2O5 | |
---|---|---|---|---|
CVDF PFB | 24.36 ± 0.16 | 2.25 ± 0.11 | 10.83 | 1.30 ± 0.22 |
CVDF SBS | 35.47 ± 0.09 | 4.34 ± 0.17 | 8.17 | 1.44 ± 0.03 |
CVDF IR | 11.72 ± 0.22 | 1.02 ± 0.05 | 11.49 | 0.53 ± 0.05 |
D PFB | 29.99 ± 0.20 | 3.81 ± 0.12 | 7.87 | 3.27 ± 0.15 |
D SBS | 45.07 ± 0.12 | 7.87 ± 0.12 | 5.73 | 1.14 ± 0.10 |
D IR | 27.68 ± 0.08 | 1.80 ± 0.05 | 15.38 | 2.75 ± 0.03 |
CVD PFB | 27.07 ± 0.78 | 2.45 ± 0.07 | 11.05 | 0.75 ± 0.05 |
CVD SBS | 37.51 ± 0.04 | 4.89 ± 0.03 | 7.67 | 0.84 ± 0.04 |
CVD IR | 22.11 ± 0.24 | 1.64 ± 0.01 | 13.48 | 1.14 ± 0.18 |
CV PFB | 22.43 ± 0.42 | 1.91 ± 0.03 | 11.74 | 0.39 ± 0.02 |
CV SBS | 38.25 ± 0.09 | 4.01 ± 0.03 | 9.54 | 0.53 ± 0.05 |
CV IR | 18.44 ± 0.67 | 1.15 ± 0.09 | 16.03 | 0.37 ± 0.02 |
ETP PFB | 36.44 ± 0.24 | 3.51 ± 0.18 | 10.38 | |
ETP SBS | 47.30 ± 0.09 | 6.52 ± 0.13 | 7.25 | |
ETP IR | 28.83 ± 0.08 | 2.52 ± 0.10 | 11.44 |
Cal | OMe + NR | OR | OCO | Ph | PhOY | COX | CO | |
---|---|---|---|---|---|---|---|---|
CVDF PFB | 31.81 | 8.59 | 27.67 | 6.18 | 10.72 | 5.90 | 8.17 | 1.96 |
CVDF SBS | 31.17 | 7.88 | 19.13 | 6.73 | 16.58 | 7.69 | 10.49 | 0.34 |
CVDF IR | 28.90 | 8.32 | 27.14 | 7.46 | 13.23 | 7.01 | 6.79 | 1.16 |
D PFB | 33.60 | 9.10 | 26.61 | 5.99 | 8.94 | 4.27 | 10.53 | 0.97 |
D SBS | 43.38 | 9.86 | 14.01 | 3.37 | 9.60 | 3.23 | 15.89 | 0.66 |
D IR | 50.80 | 5.52 | 18.95 | 4.00 | 8.54 | 3.28 | 7.23 | 1.68 |
CVD PFB | 37.25 | 9.75 | 28.14 | 4.35 | 8.03 | 5.20 | 6.67 | 0.62 |
CVD SBS | 40.90 | 7.34 | 14.18 | 3.85 | 12.27 | 5.97 | 12.92 | 2.56 |
CVD IR | 31.73 | 9.39 | 29.32 | 6.39 | 9.78 | 6.21 | 5.87 | 1.31 |
CV PFB | 32.86 | 8.33 | 23.85 | 6.34 | 12.30 | 6.73 | 8.21 | 1.37 |
CV SBS | 36.90 | 7.24 | 13.22 | 4.18 | 13.39 | 6.84 | 13.53 | 4.69 |
CV IR | 31.70 | 8.43 | 24.58 | 6.14 | 11.49 | 7.23 | 7.74 | 2.68 |
ETP PFB | 14.34 | 7.22 | 49.60 | 11.62 | 6.89 | 3.44 | 6.28 | 0.61 |
ETP SBS | 47.38 | 9.39 | 10.39 | 2.19 | 11.50 | 3.81 | 14.37 | 0.97 |
ETP IR | 5.00 | 7.97 | 58.98 | 13.19 | 7.00 | 3.66 | 2.97 | 1.22 |
CVDF | CVD | CV | D | ETP | |
---|---|---|---|---|---|
Euphorbia [15] | 331 | 117 | |||
Lantana [16] | 143 | 85 | |||
Hibiscus [13,17] a | 15 | 23 | |||
Murraya [18] | 67 | 35 | |||
Tomato Micro-Tom [19] b | |||||
Tomato Lycopersicon [7,20] c | 16 | 4–13 | 21 | 5 | |
Tomato Micro-Tom [21] | 46 | 1 | 16 | ||
Red pepper [22] | 66 | ||||
Maize [23] | 89 | ||||
Bean [24] | 109–1750 d,e | ||||
Grain [21] | 10 | 9 | 9 | ||
Tobacco [21] | 6 | 0 | 0 | ||
Spinach [25] | 24–40 f | ||||
Oilseed Rape [10] | 56 g | 42 g |
Total ME | Total NPK | N | P | K | |
---|---|---|---|---|---|
CVDF SBS | 15.5 | 15.2 | 6.29 | 0.91 | 7.96 |
D SBS | 17.8 | 25.4 | 11.4 | 0.72 | 13.3 |
CVD SBS | 221 | 162 | 80 | 7.4 | 75 |
CV SBS | 21.5 | 12.7 | 5.8 | 0.33 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoneri, E.; Baglieri, A.; Fascella, G. Biostimulant Effects of Waste Derived Biobased Products in the Cultivation of Ornamental and Food Plants. Agriculture 2022, 12, 994. https://doi.org/10.3390/agriculture12070994
Montoneri E, Baglieri A, Fascella G. Biostimulant Effects of Waste Derived Biobased Products in the Cultivation of Ornamental and Food Plants. Agriculture. 2022; 12(7):994. https://doi.org/10.3390/agriculture12070994
Chicago/Turabian StyleMontoneri, Enzo, Andrea Baglieri, and Giancarlo Fascella. 2022. "Biostimulant Effects of Waste Derived Biobased Products in the Cultivation of Ornamental and Food Plants" Agriculture 12, no. 7: 994. https://doi.org/10.3390/agriculture12070994
APA StyleMontoneri, E., Baglieri, A., & Fascella, G. (2022). Biostimulant Effects of Waste Derived Biobased Products in the Cultivation of Ornamental and Food Plants. Agriculture, 12(7), 994. https://doi.org/10.3390/agriculture12070994