Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Description
2.2. DNDC Model
2.3. Scenarios of Future Climate Change
2.4. Scenarios of Adaptive Strategies
2.5. The Net Greenhouse Effect
3. Results
3.1. Validation of the DNDC Model
3.2. The Impact of Climate Change on Crop Yield and the Net Greenhouse Effect
3.2.1. The Yield under Climate Change Scenarios
3.2.2. The Net Greenhouse Effect under Climate Change Scenarios
3.3. Adaptive Strategies in Response to Climate Change
3.3.1. Adaptation to the P/T−3 and P/T+3 Scenarios
3.3.2. Adaptation to the 0.7 P/T and 1.3 P/T Scenarios
4. Discussion
4.1. Model Performance
4.2. Climate Change Impact on Crop Yield and the Net Greenhouse Effect
4.3. Adaptive Strategies in Response to Climate Change
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Abbreviations. | Explanation. |
DNDC. | The Denitrification–Decomposition model. |
GHG. | Greenhouse gas. |
GWP. | Global warming potential. |
NCP. | North China Plain. |
SOC. | Soil organic carbon. |
0.8N. | Reduce N fertilizer by 20%. |
1.2N. | Increase N fertilizer by 20%. |
SR. | Straw Return. |
NT. | No Tillage. |
FG. | Fertigation. |
CP. | Change the crop planting time. |
CI. | Change the timing of irrigation and fertilization. |
IR. | Increase irrigation by 30%. |
CR. | Cold-resistant varieties. |
DR. | Drought-resistant varieties. |
References
- Zhang, D.D.; Lee, H.F.; Wang, C.; Li, B.S.; Pei, Q.; Zhang, J.; An, Y.L. The causality analysis of climate change and large-scale human crisis. Proc. Natl. Acad. Sci. USA 2011, 108, 17296–17301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2013: The Pysical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Contractor, S.; Donat, M.G.; Alexander, L.V. Changes in Observed Daily Precipitation over Global Land Areas since 1950. J. Clim. 2021, 34, 3–19. [Google Scholar] [CrossRef]
- Zhao, W.J. Extreme weather and climate events in China under changing climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Zydelis, R.; Weihermueller, L.; Herbst, M. Future climate change will accelerate maize phenological development and increase yield in the Nemoral climate. Sci. Total Environ. 2021, 784, 147175. [Google Scholar] [CrossRef]
- Vargas, V.P.; Soares, J.R.; Oliveira, B.G.; Lourenco, K.S.; Martins, A.A.; Del Grosso, S.J.; Do Carmo, J.B.; Cantarella, H. Sugarcane Straw, Soil Temperature, and Nitrification Inhibitor Impact N2O Emissions from N Fertilizer. Bioenergy Res. 2019, 12, 801–812. [Google Scholar] [CrossRef]
- Liu, S.X.; Mo, X.G.; Lin, Z.H.; Xu, Y.Q.; Ji, J.J.; Wen, G.; Richey, J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric. Water Manag. 2010, 97, 1195–1209. [Google Scholar] [CrossRef]
- Ming, B.; Guo, Y.Q.; Tao, H.B.; Liu, G.Z.; Li, S.K.; Wang, P. SPEIPM-based research on drought impact on maize yield in North China Plain. J. Integr. Agric. 2015, 14, 660–669. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T.; Krisciukaitiene, I. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania. Energy Policy 2012, 50, 699–710. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.L.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Shaffril HA, M.; Krauss, S.E.; Samsuddin, S.F. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar] [CrossRef] [PubMed]
- St. Luce, M.; Grant, C.A.; Ziadi, N.; Zebarth, B.J.; O’donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Johnson, E.N.; Gan, Y.T.; Lafond, G.P.; et al. Preceding crops and nitrogen fertilization influence soil nitrogen cycling in no-till canola and wheat cropping systems. Field Crops Res. 2016, 191, 20–32. [Google Scholar]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, M.; Osborne, B.; Lanigan, G.; Forristal, D.; Williams, M.; Smith, P.; Jones, M.B. Conservation tillage systems: A review of its consequences for greenhouse gas emissions. Soil Use Manag. 2013, 29, 199–209. [Google Scholar] [CrossRef]
- Li, J.Z.; Luo, Z.K.; Wang, Y.C.; Li, H.; Xing, H.T.; Wang, L.G.; Wang, E.L.; Xu, H.; Gao, C.Y.; Ren, T.Z. Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Main-taining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China. Sustainability 2019, 11, 5015. [Google Scholar] [CrossRef] [Green Version]
- Waongo, M.; Laux, P.; Kunstmann, H. Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agric. For. Meteorol. 2015, 205, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yang, X.G.; Dai, S.W.; Lv, S.; Wang, J. Increased utilization of lengthening growing season and warming temperatures by ad-justing sowing dates and cultivar selection for spring maize in Northeast China. Eur. J. Agron. 2015, 67, 12–19. [Google Scholar] [CrossRef]
- Kahil, M.T.; Connor, J.D.; Albiac, J. Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecol. Econ. 2015, 120, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Liu, J.F.; Mu, Y.J.; Pei, S.W.; Lun, X.X.; Chai, F.H. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmos. Environ. 2011, 45, 2956–2961. [Google Scholar] [CrossRef]
- Zhou, M.H.; Zhu, B.; Wang, S.J.; Zhu, X.Y.; Vereecken, H.; Bruggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Change Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef]
- Li, C.S. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosyst. 2000, 58, 259–276. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E.; Li, C.S. Application of the DNDC model to tile-drained Illinois agroecosystems: Model calibration, validation, and uncertainty analysis. Nutr. Cycl. Agroecosyst. 2007, 78, 51–63. [Google Scholar] [CrossRef]
- Abdalla, M.; Wattenbach, M.; Smith, P.; Ambus, P.; Jones, M.; Williams, M. Application of the DNDC model to predict emissions of N2O from Irish agri-culture. Geoderma 2009, 151, 327–337. [Google Scholar] [CrossRef]
- Zhu, E.Y.; Deng, J.S.; Wang, H.Q.; Wang, K.; Huang, L.Y.; Zhu, G.J.; Belete, M.; Shahtahmassebi, A. Identify the optimization strategy of nitrogen fertilization level based on trade-off analysis between rice production and greenhouse gas emission. J. Clean. Prod. 2019, 239, 118060. [Google Scholar] [CrossRef]
- Abdalla, M.; Song, X.; Ju, X.; Topp, C.F.E.; Smith, P. Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China. Environ. Pollut. 2020, 262, 114199. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.J.; Wang, L.G.; Xu, M.Y.; Liu, Z.Q.; Wang, W. Estimates of N2O Emissions and Mitigation Potential from a Spring Maize Field Based on DNDC Model. J. Integr. Agric. 2012, 11, 2067–2078. [Google Scholar] [CrossRef]
- Wang, M.X.; Wu, W.L.; Liu, W.N.; Bao, Y.H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. Int. J. Sustain. Dev. World. Ecol. 2007, 14, 400–407. [Google Scholar] [CrossRef]
- Cui, J.X.; Yan, P.; Wang, X.L.; Yang, J.; Li, Z.J.; Yang, X.L.; Sui, P.; Chen, Y.Q. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J. Clean. Prod. 2018, 193, 524–532. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wang, Y.C.; Deng, J.; Wang, L.G. Multiple-year nitrous oxide emissions from a greenhouse vegetable field in China: Effects of nitrogen management. Sci. Total Environ. 2018, 616, 1139–1148. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Anderson, M. Climate Change 2014: Synthesis Report. Libr. J. 2016, 141, 28. [Google Scholar]
- Wennman, P.; Katterer, T. Effects of moisture and temperature on carbon and nitrogen mineralization in mine tailings mixed with sewage sludge. J. Environ. Qual. 2006, 35, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.L.; Song, J.S.; Giltrap, D.; Feng, Y.T.; Yang, X.Y.; Zhang, S.L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, J.J.; Wang, L.G.; Tang, H.J.; Li, C.S.; Van Ranst, E. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agric. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar] [CrossRef]
- Hu, H.W.; Macdonald, C.A.; Trivedi, P.; Holmes, B.; Bodrossy, L.; He, J.Z.; Singh, B.K. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ. Microbiol. 2015, 17, 444–461. [Google Scholar] [CrossRef]
- Parn, J.; Verhoeven, J.T.; Butterbach-Bahl, K.; Dise, N.B.; Ullah, S.; Aasa, A.; Egorov, S.; Espenberg, M.; Jarveoja, J.; Jauhiainen, J.; et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 2018, 9, 1135. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, N.; Zhang, Z.T.; Huang, C.F.; Chen, X.; Wang, F. The central trend in crop yields under climate change in China: A systematic review. Sci. Total Environ. 2020, 704, 135355. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Tao, F.L. Performance of Temperature-Related Weather Index for Agricultural Insurance of Three Main Crops in China. Int. J. Disaster Risk Sci. 2017, 8, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson, G.P. Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat. Geosci. 2017, 10, 496–500. [Google Scholar] [CrossRef]
- Nosalewicz, M.; Stepniewska, Z.; Nosalewicz, A. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Int. Agrophysics 2013, 27, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Smith, P.; Wattenbach, M.; Zaehle, S.; Hiederer, R.; Jones RJ, A.; Montanarella, L.; Rounsevell MD, A.; Reginster, I.; Ewert, F. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Change Biol. 2005, 11, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, Y.; Ruan, H.H.; Luo, Y.Q.; Wang, J.S. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biol. Biochem. 2010, 42, 1811–1815. [Google Scholar] [CrossRef]
- Silver, W.L.; Miya, R.K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 2001, 129, 407–419. [Google Scholar] [CrossRef]
- Chai, L.L.; Hernandez-Ramirez, G.; Dyck, M.; Pauly, D.; Kryzanowski, L.; Middleton, A.; Powers, L.A.; Lohstraeter, G.; Werk, D. Can fertigation reduce nitrous oxide emissions from wheat and canola fields? Sci. Total Environ. 2020, 745, 141014. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, Y.Y.; Zhou, Y.Z.; Mu, Y.J.; Liu, J.F.; Zhang, C.L.; Liu, P.F. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agri-cultural field under drip fertigation in the North China Plain. Sci. Total Environ. 2017, 598, 87–96. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X.Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.B.; Li, X.S.; Tian, X.H.; Zhao, A.Q.; Wang, S.J.; Wang, S.X.; Shi, J.L. Effect of straw management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong Plain. Soil Tillage Res. 2016, 157, 43–51. [Google Scholar] [CrossRef]
- Raffa, D.W.; Bogdanski, A.; Tittonell, P. How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass Bioenergy 2015, 81, 345–355. [Google Scholar] [CrossRef]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Kruger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, W.L.; Meng, F.Q.; Smith, P.; Lal, R. Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 2015, 12, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Lenka, N.K.; Lal, R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 2013, 126, 78–89. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Lv, J.; Wang, Y.; Jin, K.; Wang, C.; Hu, B.; Li, J.; Ding, Z. Effects of Different Tillages on Soil Organic Carbon, Soil Microbial Biomass Carbon and Water Use Efficiency in the Slopping Field of Arid Areas. J. Soil Sci. 2007, 38, 882–886. [Google Scholar]
- Zhang, M.Y.; Wang, F.J.; Chen, F.; Malemela, M.P.; Zhang, H.L. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. J. Clean. Prod. 2013, 54, 101–107. [Google Scholar] [CrossRef]
Bulk Density | Nitrate N | Ammonium N | SOC | Soil pH |
---|---|---|---|---|
(g cm−3) | (mg kg−1) | (mg kg−1) | (g kg−1) | |
1.35 | 0.5 | 0.05 | 10 | 7.0 |
Site | Ye Country | Ye Country |
---|---|---|
2015, 2016 Wheat | 2016, 2017 Corn | |
Latitude (°) | 33.5 | 33.5 |
Tillage depth (cm) | 10 | 10 |
Soil depth sampled (cm) | 0–10 | 0–10 |
Soil pH | 7 | 7 |
Soil texture | Silty loam | Silty loam |
Clay fraction (%) | 0.2 | 0.2 |
Bulk density (g·cm−3) | 1.35 | 1.35 |
Total organic carbon (kg C·kg−1) | 0.01 | 0.01 |
Field capacity (WFPS) | 0.52 | 0.52 |
Wilting point (WFPS) | 0.34 | 0.34 |
Nitrate N (mg N·kg−1) | 0.5 | 0.5 |
Ammonium N (mg N·kg−1) | 0.05 | 0.05 |
Temperature Change Scenarios | Explanation | Precipitation Change Scenarios | Explanation |
---|---|---|---|
P/T | Baseline | P/T | Baseline |
P/T−3 | Temperature decrease of 3 °C | 0.7P/T | Precipitation decreased by 30% |
P/T−2 | Temperature decrease of 2 °C | 0.8P/T | Precipitation decreased by 20% |
P/T−1 | Temperature decrease of 1 °C | 0.9P/T | Precipitation decreased by 10% |
P/T+1 | Temperature increase of 1 °C | 1.1P/T | Precipitation increased by 10% |
P/T+2 | Temperature increase of 2 °C | 1.2P/T | Precipitation increased by 20% |
P/T+3 | Temperature increase of 3 °C | 1.3P/T | Precipitation increased by 30% |
P/T−3 | P/T+3 | |||||||
---|---|---|---|---|---|---|---|---|
Management Strategies | Yield | N2O | SOC | GWP | Yield | N2O | SOC | GWP |
0.8 N | −11.09% | −30.35% | −42.20% | −35.59% | −4.26% | 1.00% | 48.03% | 21.81% |
1.2 N | −11.06% | −1.99% | −42.12% | −19.75% | −4.28% | 39.30% | 47.32% | 42.85% |
SR | −9.89% | 4.48% | −1276.94% | −562.57% | −3.02% | 51.24% | −948.96% | −391.36% |
NT | −11.07% | −29.35% | −106.75% | −63.60% | −4.30% | 4.98% | −32.41% | −11.57% |
FG | −9.89% | 126.87% | −41.98% | 52.15% | −2.56% | 123.38% | 51.41% | 91.53% |
CP | −0.11% | −15.92% | −39.66% | −26.42% | −5.08% | 25.37% | 41.25% | 32.40% |
CI | −11.07% | −17.41% | −42.04% | −28.31% | −4.28% | 18.41% | 48.25% | 31.61% |
IR | −11.06% | −7.96% | −42.08% | −23.06% | −4.26% | 34.33% | 47.51% | 40.16% |
CR | 0.20% | −16.42% | −46.01% | −29.51% | −9.04% | 21.89% | 51.83% | 35.14% |
DR | −9.89% | −16.42% | 43.18% | −28.26% | −2.56% | 21.39% | 49.74 % | 33.94% |
0.7 P/T | 1.3 P/T | |||||||
---|---|---|---|---|---|---|---|---|
Management Strategies | Yield | N2O | SOC | GWP | Yield | N2O | SOC | GWP |
0.8 N | −7.64% | −22.39% | −19.93% | −21.30 % | 3.87% | −16.92% | 15.66% | −2.50% |
1.2 N | −7.64% | 7.46% | −20.18% | −4.77% | 3.87% | 24.88% | 15.28% | 20.63% |
SR | −5.96% | 20.90% | −1135.97% | −491.03% | 3.87% | 32.34% | −1084.43% | −461.85% |
NT | −7.56% | −22.39% | −101.75% | −57.51% | 3.87% | −6.47% | −54.69% | −27.81% |
FG | 2.72% | −5.47% | −11.95% | −8.34% | 3.87% | 86.57% | 16.39% | 55.51% |
CP | −7.15% | −1.00% | −5.77% | −3.11% | 4.15% | 12.94% | 4.63% | 9.26% |
CI | −7.58% | −7.96% | −16.93% | −11.93% | 3.87% | 5.97% | 15.30% | 10.10% |
IR | −7.64% | 2.99% | −20.03% | −7.20% | 3.87% | 17.91% | 15.36% | 16.78% |
CR | −6.77% | −5.97% | −10.07% | −7.78% | 4.86% | 10.45% | 20.94% | 15.09% |
DR | −0.32% | −7.46% | −15.25% | −10.91% | 3.87% | 6.97% | 16.13% | 11.02% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Chang, N.; Ding, W.; Xu, C.; Zhang, J.; Zhang, J.; Li, H. Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change. Agriculture 2022, 12, 1089. https://doi.org/10.3390/agriculture12081089
Yi X, Chang N, Ding W, Xu C, Zhang J, Zhang J, Li H. Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change. Agriculture. 2022; 12(8):1089. https://doi.org/10.3390/agriculture12081089
Chicago/Turabian StyleYi, Xiaopei, Naijie Chang, Wuhan Ding, Chi Xu, Jing Zhang, Jianfeng Zhang, and Hu Li. 2022. "Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change" Agriculture 12, no. 8: 1089. https://doi.org/10.3390/agriculture12081089
APA StyleYi, X., Chang, N., Ding, W., Xu, C., Zhang, J., Zhang, J., & Li, H. (2022). Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change. Agriculture, 12(8), 1089. https://doi.org/10.3390/agriculture12081089