Spatiotemporal Change of Heat Stress and Its Impacts on Rice Growth in the Middle and Lower Reaches of the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Spatiotemporal Change of Heat Stress
3.2. Simulation of Heat Stress
3.3. Response of Heat Stress of Rice to Climate Change
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013. The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Hu, T.; Kong, F.; Zhang, D. Changes in the spatial pattern of rice exposure to heat stress in China over recent decades. Clim. Chang. 2019, 154, 229–240. [Google Scholar] [CrossRef]
- Ishimaru, T.; Xaiyalath, S.; Nallathambi, J.; Sathishraj, R.; Yoshimoto, M.; Phoudalay, L.; Samson, B.; Hasegawa, T.; Hayashi, K.; Arumugam, G.; et al. Quantifying rice spikelet sterility in potential heat-vulnerable regions: Field surveys in Laos and southern India. Field Crops Res. 2016, 190, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Furuya, J.; Shen, Z.; Kim, W.; Okada, M.; Fujimori, S.; Hasegawa, T.; Nishimori, M. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 2017, 7, 7800. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Zhang, S.; Zhu, Z.; Shi, W. Response of crop yields to climate trends since 1980 in China. Clim. Res. 2012, 54, 233–247. [Google Scholar] [CrossRef]
- Tang, H.; Pang, J.; Zhang, G.; Takigawa, M.; Liu, G.; Zhu, J.; Kobayashi, K. Mapping ozone risks for rice in China for years 2000 and 2020 with flux-based and exposure-based doses. Atmos. Environ. 2014, 86, 74–83. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Sathishraj, R.; Manoharan, M.; Sumanth, H.N.; Muthurajan, R.; Ishimaru, T.; Krishna, J.S. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crop Res. 2017, 203, 238–242. [Google Scholar] [CrossRef]
- Espe, M.B.; Hill, J.E.; Hijmans, R.J.; McKenzie, K.; Mutters, R.; Espino, L.A.; Leinfelder-Miles, M.; van Kessel, C.; Linquist, B.A. Point stresses during reproductive stage rather than warming seasonal temperature determines yield in temperate rice. Glob. Chang. Biol. 2017, 23, 4386–4395. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Wang, H.; Carrillo, C.M.; Ault, T.R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 2019, 14, 064003. [Google Scholar] [CrossRef]
- Chen, W.F.; Xu, Z.J.; Tang, L. 20 years’ development of super rice in China-The 20th anniversary of the super rice in China. J. Integr. Agric. 2017, 16, 981–983. [Google Scholar] [CrossRef]
- He, L.; Cleverly, J.; Wang, B.; Jin, N.; Mi, C.; Liu, D.L.; Yu, Q. Multi-model ensemble projections of future extreme heat stress on rice across southern China. Theor. Appl. Climatol. 2018, 133, 1107–1118. [Google Scholar] [CrossRef]
- Xiong, D.; Ling, X.; Huang, J.; Peng, S. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environ. Exp. Bot. 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, C.; Yao, S. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Rehmani, M.I.; Wei, G.; Hussain, N.; Ding, C.; Li, G.; Liu, Z.; Wang, S.; Ding, Y. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Res. 2014, 156, 231–241. [Google Scholar] [CrossRef]
- Rehmani, M.I.; Ding, C.; Li, G.; Ata-Ul-Karim, S.T.; Hadifa, A.; Bashir, M.A.; Hashem, M.; Alamri, S.; Al-Zubair, F.; Ding, Y. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. J. King Saud Univ.–Sci. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Xu, J.; Henry, A.; Sreenivasulu, N. Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security. Plant Cell Environ. 2020, 43, 1595–1608. [Google Scholar] [CrossRef]
- Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef] [Green Version]
- Begcy, K.; Sandhu, J.; Walia, H. Transient heat stress during early seed development primes germination and seedling establishment in rice. Front. Plant Sci. 2018, 9, 1768. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Xue, Y.; Lin, J. Recent changes of rice heat stress in Jiangxi Province, southeast China. Int. J. Biometeorol. 2017, 61, 623–633. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, S.Y.; Zeng, Z.M.; Fu, C.B. Analysis of simulated heavy rain over the Yangtze River Valley during 11–30 June 1998 using RIEMS. Adv. Atmos. Sci. 2003, 20, 815–824. [Google Scholar]
- Xiong, Z.; Fu, C.B.; Zhang, Q. On the ability of the regional climate model RIEMS to simulate the present climate over Asia. Adv. Atmos. Sci. 2006, 23, 784–791.162. [Google Scholar] [CrossRef]
- Xiong, Z.; Fu, C.B.; Yan, X.D. Regional integrated environmental model system and its simulation of East Asia summer monsoon. Chin. Sci. Bull. 2009, 54, 4253–4261.161. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, Y.; Feng, M.; Li, B.; Liu, A.; Mao, F.; Zhuang, L.; Li, Y.; Wu, M. Assessment of Heating Harm for Rice; National Standard of People’s Republic of China: Beijing, China, 2011. [Google Scholar]
- Zhang, J.; Zhang, Z.; Tao, F. Performance of temperature-related weather index for agricultural insurance of three main crops in China. Int. J. Disaster Risk Sci. 2017, 8, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Ding, Y.; Wang, Q.; Liu, Z.; Li, G.; Muhammad, I.; Wang, S. The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. J. Agric. Sci. 2010, 148, 329–339. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Wang, C.; Wang, P.; Tao, F. Future extreme temperature and its impact on rice yield in China. Int. J. Climatol. 2017, 37, 4814–4827. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F. Improving rice development and phenology prediction across contrasting climate zones of China. Agric. For. Meteorol. 2019, 268, 224–233. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Chen, Y.; Zhang, L.; Tao, F. Improving regional wheat yields estimations by multi-step-assimilating of a crop model with multi-source data. Agric. For. Meteorol. 2020, 290, 107993. [Google Scholar] [CrossRef]
Agrometeorological Stations | Longitude | Latitude | Annual Mean Precipitation (mm) | Annual Mean of Daily Average Temperature (°C) | Annual Mean of Daily Maximum Temperature (°C) | Annual Mean of Daily Minimum Temperature (°C) |
---|---|---|---|---|---|---|
Nanxian | 112.40 | 29.36 | 336.87 | 18.15 | 21.25 | 14.21 |
Changde | 111.68 | 29.05 | 368.70 | 17.82 | 21.53 | 14.32 |
Huaiyin | 119.03 | 33.60 | 188.04 | 15.16 | 20.00 | 11.16 |
Chuxian | 118.30 | 32.30 | 311.93 | 16.12 | 20.56 | 12.16 |
Liuan | 116.50 | 31.75 | 285.85 | 16.42 | 20.80 | 12.64 |
Tongcheng | 116.93 | 31.05 | 422.68 | 16.61 | 20.64 | 12.57 |
Wujin | 119.93 | 31.77 | 316.33 | 16.36 | 20.62 | 12.97 |
Jiujiang | 116.00 | 29.73 | 333.43 | 18.25 | 22.19 | 15.30 |
Jinhua | 119.65 | 29.11 | 355.95 | 18.28 | 22.59 | 14.63 |
Yinxian | 121.57 | 29.87 | 335.14 | 17.60 | 21.75 | 14.09 |
Zhangshu | 115.55 | 28.06 | 277.17 | 18.59 | 22.64 | 15.14 |
Lishui | 119.92 | 28.45 | 311.23 | 19.10 | 24.07 | 14.74 |
Jiaojiang | 122.25 | 28.63 | 336.23 | 18.33 | 22.04 | 14.81 |
Nancheng | 116.65 | 27.58 | 383.53 | 18.26 | 22.88 | 15.04 |
Guangchang | 116.33 | 26.85 | 391.61 | 18.64 | 23.84 | 15.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S. Spatiotemporal Change of Heat Stress and Its Impacts on Rice Growth in the Middle and Lower Reaches of the Yangtze River. Agriculture 2022, 12, 1097. https://doi.org/10.3390/agriculture12081097
Zhang S. Spatiotemporal Change of Heat Stress and Its Impacts on Rice Growth in the Middle and Lower Reaches of the Yangtze River. Agriculture. 2022; 12(8):1097. https://doi.org/10.3390/agriculture12081097
Chicago/Turabian StyleZhang, Shuai. 2022. "Spatiotemporal Change of Heat Stress and Its Impacts on Rice Growth in the Middle and Lower Reaches of the Yangtze River" Agriculture 12, no. 8: 1097. https://doi.org/10.3390/agriculture12081097
APA StyleZhang, S. (2022). Spatiotemporal Change of Heat Stress and Its Impacts on Rice Growth in the Middle and Lower Reaches of the Yangtze River. Agriculture, 12(8), 1097. https://doi.org/10.3390/agriculture12081097