Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Plants, Pathogenic Fungi, and Culture Medium
2.2. Invasive Plants and Preparation of Plant Extracts
2.3. Inhibition of Plant Extracts on Fungal Radial Growth
2.4. Inhibition of Plant Extracts on Fungal Spore Density
2.5. Inhibition of Plant Extracts on Spore Germination
2.6. Inhibition of Plant Extracts on Fungal Biomass
2.7. Phytochemical Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- El-Shahir, A.A.; El-Wakil, D.A.; Latef, A.A.H.A.; Youssef, N.H. Bioactive compounds and antifungal activity of leaves and fruit methanolic extracts of Ziziphus spina-christi L. Plants 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, P.A.; Baleev, D.N.; Ivanova, M.I.; Sokolova, L.M.; Karakozova, M.V. Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Nat. 2020, 12, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Placinta, C.M.; D’Mello, J.P.F.; MacDonald, A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. Handbook of Plant and Fungal Toxicants; CRC Press: Boca Raton, FL, USA, 1997; p. 368. [Google Scholar]
- Paster, N.; Lecong, Z. Possible synergistic effect of nisin and propionic acid on the growth of the mycotoxic fungi Aspergillus parasiticus, Aspergillus ochraceus, and Fusarium moniliforme. J. Food Prot. 1999, 62, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Al-Samarrai, G.; Singh, H.; Syarhabil, M. Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to fungicides. Ann. Agric. Environ. Med. 2012, 19, 673–676. [Google Scholar] [PubMed]
- Zaker, M. Natural plant products as eco-friendly fungicides for plant disease control—A review. Agriculturists 2016, 14, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Borges, D.F.; Lopes, E.A.; Moraes, A.R.F.; Soares, M.S.; Visotto, L.E.; Oliveria, C.R.; Valente, V.M.M. Formulation of botanicals for the control of plant pathogens: A review. Crop Prot. 2018, 110, 135–140. [Google Scholar] [CrossRef]
- Choudhury, D.; Dobhal, P.; Srivastava, S.; Saha, S.; Kundu, S. Role of botanical plant extracts to control plant pathogen-a review. Indian J. Agric. Res. 2018, 52, 341–346. [Google Scholar]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Pretorius, J.C.; Magama, S.; Zietsman, P.C.; van Wyk, B.E. Growth inhibition of plant pathogenic bacteria and fungi by extract from selected South African plant species. S. Afr. J. Bot. 2003, 69, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Al-Reza, S.M.; Rahman, A.; Ahmed, Y.; Kang, S.C. Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts from Cetrum nocturum L. Pesticide Biochem. Phys. 2010, 96, 86–92. [Google Scholar] [CrossRef]
- Gurjar, M.S.; Ali, S.; Akhtar, M.; Singh, K.S. Efficiency of plant extracts in plant diesease management. Agric. Sci. 2012, 3, 425–433. [Google Scholar]
- Draz, I.S.; Elkwaga, A.A.; Elzaawely, A.A.; El-Zahaby, H.M.; Ismail, A.W.A. Application of plant extracts as inducers to challenge leaf rust of wheat. Egypt. J. Biol. Pest Cont. 2019, 29, 6. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.S.; Mohamed, A.A.; Feleafel, M.N.; Salem, M.Z.M.; Ali, H.M.; Akrami, M.; Ab-Elkader, D.Y. Natural plant extracts and microbial antagonists to control fungal pathogens and improve productivity of zucchini (Cucurbita pepo L.) In Vitro and in Greenhouse. Horticulture 2021, 7, 470. [Google Scholar] [CrossRef]
- Morsy, K.M.; Abdel-Monaim, M.F.; Mazen, M.M. Use of abiotic and biotic inducers for controlling fungal disseases and improving growth of alfalfa. World J. Agric. Sci. 2011, 7, 566–576. [Google Scholar]
- Rongai, D.; Milano, F.; Scio, E. Inhibitory effect of plant extracts on conidial germination of the phytopathogenic fungus Fusarium oxysporum. Am. J. Plant Sci. 2012, 3, 1693–1698. [Google Scholar] [CrossRef] [Green Version]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.A. Invasion Ecology, 2nd ed.; Wiley-Blackwell Publishing: Oxford, UK, 2013; p. 444. [Google Scholar]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, L. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 2011, 23, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dueñas, M.A.; Ruffhead, H.J.; Wakefield, N.H.; Roberts, P.D.; Hemming, D.J.; Diaz-Soltero, H. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodivers. Conserv. 2018, 27, 3171–3183. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.M.; Abd-Elmabod, S.K.; El-Ashry, S.M.; Soliman, W.S.; El-Tayeh, N.; Castillo, J.M. Capability of the invasive tree Prosopis glandulosa Torr. to remediate soil treated with Sewage Sludge. Sustainability 2019, 11, 2711. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Laginhas, B.B.; Whitlock, R.; Allen, J.M.; Bates, A.E.; Bernatchez, G.; Diez, J.M.; Early, R.; Lenoir, J.; Vila, M.; et al. Disentangling the abundance-impact relationship for invasive species. Proc. Natl. Acad. Sci. USA 2019, 116, 9919–9924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Eloff, J.; Angeh, I.; McGaw, L. A plant antifungal product from Melianthus comosus (Melianthaceae) leaf extracts. Planta Med. 2006, 72, S_060. [Google Scholar] [CrossRef]
- Amer, W.M. The worst invasive species to Egypt: Chapter 3. In Invasive Alien Species: Observations and Issues from Around the World; Pullaiah, T., Ielmini, M.R., Eds.; John Wiley & Sons Ltd.: London, UK, 2021; pp. 112–138. [Google Scholar] [CrossRef]
- Thomas, J.; El-Sheikh, M.A.; Alfarhan, A.H.; Alatar, A.A.; Sivadasan, M.; Basahi, M.; Al-Obaid, S.; Rajakrishnan, R. Impact of alien invasive species on habitats and species richness in Saudi Arabia. J. Arid Environ. 2016, 127, 53–65. [Google Scholar] [CrossRef]
- Zieden, E.S.H.; Khattab, A.E.N.A.E.H.; Sahab, A.F. New fungi causing postharvest spoilage of cucumber fruits and their molecular characterization in Egypt. J. Plant Prot. Res. 2018, 58, 362–371. [Google Scholar]
- Attia, M.S.; Sharaf, A.E.M.M.; Sharaf, M.A.; Zayed, A.S. Protective action of some bio-pesticides against early blight disease caused by Alternaria solani in tomato plant. Int. J. Innov. Sci. Eng. Tech. 2017, 4, 67–94. [Google Scholar]
- Abdel-Gawad, K.M.; Abdel-Mallek, A.Y.; Hussein, N.A.; Abel-Rahim, I.R. Diversity of mycobiota associated with onion (Allium cepa L.) cultivated in Assiut, with a newly recorded fungal species to Egypt. J. Micro. Biotech. Food Sci. 2017, 6, 1145–1151. [Google Scholar] [CrossRef]
- Bhardwaj, S.K. Evaluation of plant extracts as antifungal agents against Fusarium solani (Mart.) Sacc. World J. Agric. Sci. 2012, 8, 385–388. [Google Scholar]
- Zaker, M. Antifungal evaluation of some plant extracts in controlling Fusarium solani, the causal agent of potato dry rot in vitro and in vivo. Int. J. Agric. Biosci. 2014, 3, 190–195. [Google Scholar]
- Crous, P.W.; Hawksworth, D.L.; Wingfield, M.J. Identifying and naming plant-pathogenic fungi: Past, present, and future. Annu. Rev. Phytopathol. 2015, 53, 247–267. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: Saint Paul, MN, USA, 1998; p. 218. [Google Scholar]
- Kelly, A.C.; Ward, T.J. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen. PLoS ONE 2018, 13, e0194616. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.M.F.; Maffia, L.A.; Casali, V.W.D.; Cardoso, A.A. In Vitro Effect of Plant Leaf Extracts on Mycelial Growth and Sclerotial Germination of Sclerotium cepivorum. J. Phytopathol. 1998, 146, 421–425. [Google Scholar] [CrossRef]
- Hendricks, K.E.; Christman, M.C.; Roberts, P.D. A statistical evaluation of methods of in-vitro growth assessment for Phyllosticta citricarpa: Average colony diameter vs. area. PLoS ONE 2017, 12, e0170755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astiti, N.P.A.; Suprapta, D.N. Antifungal activity of teak (Tectona grandis L.f) leaf extract against Arthrinium phaeospermum (corda) MB Ellis, the cause of wood decay on Albizia falcataria (L.). J. ISSAAS 2012, 18, 62–69. [Google Scholar]
- Gemeda, N.; Woldeamanuel, Y.; Asrat, D.; Debella, A. Effects of essential oils on Aspergillus spore germination, growth and mycotoxin production: A potential source of botanical food preservative. Asian Pac. J. Trop. Biomed. 2014, 4, S373–S381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summerbell, R.C. Aspergillus, Fusarium, Sporothrix, Piedraia and their relatives. In Pathogenic Fungi in Humans and Animals; Howard, D.H., Ed.; Marcel Dekker Press: New York, NY, USA, 2003; pp. 400–425. [Google Scholar]
- Summerell, B.A.; Laurence, M.H.; Liew, E.C.Y.; Leslie, J.F. Biogeography and phylogeography of Fusarium: A review. Fungal Divers. 2010, 44, 3–13. [Google Scholar] [CrossRef]
- Summerell, B.A.; Leslie, J.F. Fifty years of Fusarium: How could nine species have ever been enough? Fungal Divers. 2011, 50, 135–144. [Google Scholar] [CrossRef]
- El-Ganainy, S.M.; El-abeid, S.E.; Ahmed, Y.; Iqbal, Z. Morphological and molecular characterization of large-spored Alternaria species associated with potato and tomato early blight in Egypt. Int. J. Agric. Biol. 2021, 25, 1101–1110. [Google Scholar] [CrossRef]
- Olanya, O.M.; Honeycutt, C.W.; Larkin, R.P.; Griffin, T.S.; He, Z.; Halloran, J.M. The effect of cropping systems and irrigation management on development of potato early blight. J. Gen. Plant Pathol. 2009, 75, 267–275. [Google Scholar] [CrossRef]
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum–current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef] [Green Version]
- Elsharkawy, M.M.; El-Sawy, M.M. Control of Bean common mosaic virus by plant extracts in bean plants. Int. J. Pest Manag. 2015, 61, 54–59. [Google Scholar] [CrossRef]
- Burkart, A. A Monograph of The Genus Prosopis (Leguminosae Subfam. Mimosoideae). J. Arnold Arbor. 1976, 57, 219–249. [Google Scholar] [CrossRef]
- Pasiecznik, N.M.; Harris, P.J.C.; Smith, S.J. Identifying Tropical Prosopis Species: A Field Guide; HDRA: Coventry, UK, 2004; p. 30. [Google Scholar]
- Mazzuca, M.; Kraus, W.; Balzaretti, V. Evaluation of the Biological Activities of Crude Extracts from Patagonian Prosopis Seeds and Some of Their Active Principles. J. Herb. Pharmacother. 2003, 3, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Verma, S.K. Antibacterial properties of Alkaloid rich fractions obtained from various parts of Prosopis juliflora. Int. J. Pharma. Sci. Res. 2011, 2, 114–120. [Google Scholar]
- Singh, G.; Shukla, S. Effects of Prosopis juliflora (DC.) Tree on Under Canopy Resources, Diversity, and Productivity of Herbaceous Vegetation in Indian Desert. Arid Land Res. Manag. 2012, 26, 151–165. [Google Scholar] [CrossRef]
- Prabha, D.S.; Dahms, H.U.; Malliga, P. Pharmacological potentials of phenolic compounds from Prosopis spp.-a. J. Coast. Life Med. 2015, 2, 918–924. [Google Scholar]
- AL-Sodany, Y.M.; Shaltout, K.H.; Eid, E.M. Demography of Ipomoea carnea: An invasive species in the Nile Delta, Egypt. Int. J. Agric. Biol. 2009, 11, 501–508. [Google Scholar]
- Adsul, V.; Khatiwora, E.; Kulkarni, M.; Tambe, A.; Pawar, P.; Deshpande, N. GC-MS study of fatty acids, esters, alcohols from the leaves of Ipomoea carnea. Int. J. Pharm. Tech. Res. 2009, 1, 1224–1226. [Google Scholar]
- Shaltout, K.H.; Al-Sodany, Y.M.; Eid, E.M. The biology of Egyptian woody perennials-2. Ipomoea Carnea Jacq. Assiut Univ. Bull. Environ. Res. 2006, 9, 75–91. [Google Scholar]
- Gaur, K.; Kori, M.L.; Tyagi, L.K.; Nona, R.K.; Sharma, C.S.S.; Tripathi, P. In-vitro antioxidant activity of leaves of Ipomoea fistulosa Linn. Acad. J. Plant Sci. 2009, 2, 60–64. [Google Scholar]
- Muhammad, A.A.; Ayesha, Z.; Tauheeda, R.; Samina, A.; Durre, S.; Muhammad, J.; Sabahat, Z.S.; Tayyaba, S.; Muhammad, A. Evaluation of comparative antioxidant potential of aqueous and organic fractions of Ipomoea carnea. J. Med. Plants Res. 2010, 4, 1883–1887. [Google Scholar]
- Adsul, V.B.; Khatiwora, E.; Torane, R.; Deshpande, N.R. Antimicrobial activities of Ipomoea carnea leaves. J. Nat. Prod. Plant Resour. 2012, 2, 597–600. [Google Scholar]
- Sethi, P.; Kulkarni, P.R. Leucaena Leucocephala a Nutrition Profile. Food Nutr. Bull. 1995, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Deodhar, U.P.; Paradkar, A.R.; Purohit, A.P. Preliminary evaluation of Leucaena leucocephala seed gum as a tablet binder. Drug Dev. Ind. Pharm. 1998, 24, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.R.P.; Razdan, B. Studies on disintegrant action of Leucaena leucocephala seed gum in ibuprofen tablet and its mechanism. J. Sci. Ind. Res. 2007, 66, 550–557. [Google Scholar]
- Gamal-Eldeen, A.; Amer, H.; Helmy, W.; Ragab, H.; Talaat, R. Antiproliferative and cancer-chemopreventive properties of sulfated glycosylated extract derived from Leucaena leucocephala. Indian J. Pharm. Sci. 2007, 69, 805–811. [Google Scholar] [CrossRef]
- Crounse, R.G.; Maxwell, J.D.; Blank, H. Inhibition of growth of hair by mimosine. Nature 1962, 194, 694–695. [Google Scholar] [CrossRef]
- Chang, H.C.; Lee, T.H.; Chuang, L.Y.; Yen, M.H.; Hung, W.C. Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms. Cancer Lett. 1999, 145, 1–8. [Google Scholar] [CrossRef]
- Villaseñor, I.M.; Gajo, R.M.T.; Gonda, R.C. Bioactivity studies on the alkaloid extracts from seeds of Leucaena leucocephala. Phyther. Res. 1997, 11, 615–617. [Google Scholar] [CrossRef]
- Ademola, I.O.; Akanbi, A.I.; Idowu, S.O. Comparative nematocidal activity of chromatographic fractions of Leucaena leucocephala seed against gastrointestinal sheep nematodes. Pharm. Biol. 2005, 43, 599–604. [Google Scholar] [CrossRef]
- Sumarny, R.; Simanjuntak, P. Antidiabetic activity of active fractions of Leucaena leucocephala (lmk) dewit seeds in experiment model. Eur. J. Sci. Res. 2010, 43, 384–391.68. [Google Scholar]
- Idowu, S.O.; Adeyemo, M.A.; Ogbonna, U.I. Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics. J. Biol. Eng. 2009, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
Fungal Species | Crop Plant | Disease |
---|---|---|
Fusarium solani | Cucumber | Root rot/wilt |
Alternaria solani | Tomato | Early blight |
Colletotrichum circinans | Onion | Anthracnose/onion smudge |
Fusariumsolani | Alternariasolani | Colletotrichumcircinans | |||||
---|---|---|---|---|---|---|---|
Invasive Plant | Conc. (%) | Diameter Mean (mm) | % Inhibition | Diameter Mean (mm) | % Inhibition | Diameter Mean (mm) | % Inhibition |
Prosopis juliflora | After 5 days | ||||||
C | 0.03 ± 0.00 d | 0.0 ± 0.00 d | 0.01 ± 0.00 d | 0.0 ± 0.00 c | 0.00 ± 0.00 d | 0.0 ± 0.00 d | |
10 | 1.93 ± 0.03 c | 39.2 ± 2.50 c | 1.12 ± 0.02 c | 57.5 ± 2.31 b | 0.63 ± 0.03 c | 24.0 ± 1.20 c | |
20 | 2.70 ± 0.01 b | 48.0 ± 2.20 b | 1.58 ± 0.04 b | 58.9 ± 1.04 b | 0.70 ± 0.14 b | 40.0 ± 0.98 b | |
30 | 4.30 ± 0.1 a | 59.0 ± 2.10 a | 2.42 ± 0.07 a | 64.0 ± 2.63 a | 0.83 ± 0.13 a | 66.0 ± 0.54 a | |
Ipomoea carnea | C | 0.02 ± 0.00 d | 0.0 ± 0.00 d | 0.03 ± 0.01 d | 0.0 ± 0.00 d | 0.00 ± 0.00 d | 0.0 ± 0.00 d |
10 | 2.56 ± 0.10 c | 2.4 ± 0.23 c | 3.75 ± 0.63 c | 1.8 ± 0.14 c | 0.87 ± 0.02 c | 6.7 ± 0.52 c | |
20 | 5.58 ± 0.11 b | 11.5 ± 1.00 b | 4.20 ± 0.52 b | 6.0 ± 0.17 b | 1.20 ± 0.01 b | 16.0 ± 1.62 b | |
30 | 7.38 ± 0.09 a | 20.0 ± 0.17 a | 6.25 ± 0.41 a | 7.8 ± 0.26 a | 1.17 ± 0.52 a | 27.2 ± 1.87 a | |
Leucaena leucocephala | C | 0.04 ± 0.01 d | 0.0 ± 0.00 d | 0.03 ± 0.01 d | 0.0 ± 0.00 d | 0.00 ± 0.00 d | 0.0 ± 0.00 d |
10 | 4.82 ± 0.93 c | 3.4 ± 0.73 c | 2.88 ± 0.23 c | 11.5 ± 0.43 c | 0.66 ± 0.66 c | 7.6 ± 0.13 c | |
20 | 5.45 ± 0.50 b | 3.6 ± 0.42 b | 3.40 ± 0.12 b | 16.7 ± 0.47 b | 1.33 ± 0.61 b | 26.7 ± 0.55 b | |
30 | 7.50 ± 0.43 a | 9.1 ± 1.42 a | 6.47 ± 0.72 a | 18.7 ± 1.72 a | 1.68 ± 0.04 a | 34.7 ± 2.42 a | |
Prosopis juliflora | After 8 days | ||||||
C | 0.01 ± 0.00 d | 0.0 ± 0.00 d | 0.01 ± 0.00 d | 0.0 ± 0.00 c | 0.00 ± 0.00 d | 0.0 ± 0.00 d | |
10 | 2.47 ± 0.15 c | 46.0 ± 1.03 c | 1.40 ± 0.09 c | 58.3 ± 1.01 b | 0.75 ± 0.03 c | 33.0 ± 1.10 c | |
20 | 3.38 ± 0.07 b | 49.9 ± 1.05 b | 2.38 ± 0.03 b | 59.0 ± 0.38 b | 0.85 ± 0.0 b | 51.0 ± 1.00 b | |
30 | 5.02 ± 0.23 a | 61.0 ± 1.47 a | 2.02 ± 0.20 a | 72.0 ± 1.14 a | 0.97 ± 0.02 a | 68.0 ± 2.10 a | |
Ipomoea carnea | C | 0.04 ± 0.00 d | 0.01 ± 0.00 d | 0.03 ± 0.00 d | 0.0 ± 0.00 d | 0.01 ± 0.00 d | 0.0 ± 0.00 d |
10 | 4.88 ± 0.45 c | 10.5 ± 0.43 c | 3.83 ± 0.76 c | 3.8 ± 0.26 c | 1.48 ± 0.08 c | 11.0 ± 0.63 c | |
20 | 7.30 ± 0.13 b | 11.6 ± 0.86 b | 5.38 ± 0.06 b | 7.7 ± 0.58 b | 1.78 ± 0.28 b | 27.2 ± 1.38 b | |
30 | 8.35 ± 0.73 a | 48.0 ± 1.32 a | 6.58 ± 0.36 a | 18.1 ± 1.01 a | 1.47 ± 0.03 a | 39.5 ± 1.51 a | |
Leucaena leucocephala | C | 0.05 ± 0.00 d | 0.0 ± 0.00 d | 0.01 ± 0.00 d | 0.0 ± 0.00 d | 0.00 ± 0.00 d | 0.0 ± 0.00 d |
10 | 5.18 ± 0.45 c | 3.6 ± 0.35 c | 3.17 ± 0.44 c | 12.8 ± 0.78 c | 1.42 ± 0.05 c | 19.7 ± 1.05 c | |
20 | 7.97± 0.23 b | 7.3 ± 0.17 b | 6.42 ± 0.11 b | 17.8 ± 0.82 b | 1.45 ± 0.03 b | 33.0 ± 0.73 b | |
30 | 8.53 ± 0.24 a | 14.4 ± 0.53 a | 6.83 ± 0.93 a | 26.0 ± 1.03 a | 1.97 ± 0.12 a | 40.8 ± 1.05 a |
Pathogenic Fungi | C | 10% Conc. | 20% Conc. | 30% Conc. |
---|---|---|---|---|
Prosopis juliflora | ||||
Fusarium solani | 4.42 | 2.54 | 2.02 | 1.84 |
Alternaria solani | 3.23 | 1.34 | 1.29 | 1.23 |
Colletotrichum circinans | 1.17 | 0.67 | 0.46 | 0.51 |
Ipomoea carnea | ||||
Fusarium solani | 4.42 | 4.38 | 4.29 | 3.33 |
Alternaria solani | 3.23 | 3.68 | 3.36 | 3.07 |
Colletotrichum circinans | 1.17 | 0.97 | 0.98 | 0.79 |
Leucaena leucocephala | ||||
Fusarium solani | 4.42 | 2.54 | 2.27 | 2.04 |
Alternaria solani | 3.23 | 1.34 | 1.88 | 1.73 |
Colletotrichum circinans | 1.17 | 0.67 | 0.86 | 0.65 |
Invasive Plant | Conc. (%) | Fusarium solani | Alternaria solani | Colletotrichum circinans | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Spore Density (Spores/mL × 105) | Spore Germination (Spores/mL × 105) | Biomass (g/100 mL) | Spore Density (Spores/mL × 105) | Spore Germination (Spores/mL × 105) | Biomass (g/100 mL) | Spore Density (Spores/mL × 105) | Spore Germination (Spores/mL × 105) | Biomass (g/100 mL) | ||
Prosopis juliflora | C | 5.59 ± 0.03 a | 2.80 ± 0.01 a | 0.50 ± 0.01 a | 3.25 ± 0.02 a | 2.30 ± 0.01 a | 0.33 ± 0.00 a | 5.75 ± 0.05 a | 3.75 ± 0.03 a | 1.00 ± 0.01 a |
10 | 4.37 ± 0.09 b | 2.60 ± 0.12 b | 0.44 ± 0.04 b | 3.17 ± 0.09 ab | 2.13 ± 0.09 b | 0.29 ± 0.03 b | 5.50 ± 0.15 b | 3.50 ± 0.12 b | 0.95 ± 0.01 b | |
20 | 2.50 ± 0.15 c | 1.66 ± 0.11 c | 0.20 ± 0.10 c | 1.73 ± 0.09 c | 1.42 ± 0.06 c | 0.10 ± 0.01 c | 3.40 ± 0.12 c | 2.13 ± 0.09 c | 0.74 ± 0.06 c | |
30 | 0.11 ± 0.01 d | 0.04 ± 0.03 d | 0.10 ± 0.01 d | 0.01 ± 0.00 d | 0.01 ± 0.00 d | 0.03 ± 0.01 d | 1.20 ± 0.06 d | 0.87 ± 0.03 d | 0.60 ± 0.04 d | |
Ipomoea carnea | C | 2.63 ± 0.03 a | 2.01 ± 0.02 a | 0.48 ± 0.00 a | 3.45 ± 0.02 a | 2.70 ± 0.02 a | 1.52 ± 0.01 a | 5.55 ± 0.05 a | 3.15 ± 0.03 a | 1.72 ± 0.02 a |
10 | 2.43 ± 0.09 b | 1.90 ± 0.06 b | 0.38 ± 0.03 b | 3.20 ± 0.12 b | 2.50 ± 0.06 b | 1.33 ± 0.09 b | 5.00 ± 0.25 b | 3.07 ± 0.07 b | 1.57 ± 0.18 b | |
20 | 1.40 ± 0.12 c | 1.43 ± 0.12 c | 0.18 ± 0.02 c | 2.00 ± 0.15 c | 1.80 ± 0.06 c | 0.78 ± 0.03 c | 2.32 ± 0.03 c | 2.30 ± 0.12 c | 0.94 ± 0.02 c | |
30 | 0.14 ± 0.08 d | 0.03 ± 0.01 d | 0.07 ± 0.03 d | 0.43 ± 0.05 d | 0.37 ± 0.12 d | 0.58 ± 0.20 d | 1.33 ± 0.09 d | 1.07 ± 0.06 d | 0.81 ± 0.09 d | |
Leucaena leucocephala | C | 4.35 ± 0.03 a | 2.97 ± 0.02 a | 1.72 ± 0.02 a | 5.83 ± 0.08 a | 3.63 ± 0.03 a | 2.01 ± 0.02 a | 2.33 ± 0.01 a | 1.75 ± 0.03 a | 1.00 ± 0.01 a |
10 | 4.17 ± 0.12 b | 2.77 ± 0.13 b | 1.20 ± 0.35 b | 5.28 ± 0.32 b | 3.40 ± 0.15 b | 1.77 ± 0.13 b | 2.20 ± 0.06 b | 1.50 ± 0.12 b | 0.68 ± 0.29 b | |
20 | 2.93 ± 0.15 c | 1.88 ± 0.10 c | 0.78 ± 0.15 c | 4.53 ± 0.20 c | 1.70 ± 0.06 c | 0.97 ± 0.03 c | 1.93 ± 0.09 c | 1.17 ± 0.09 c | 0.58 ± 0.15 c | |
30 | 0.15 ± 0.02 d | 0.50 ± 0.35 d | 0.20 ± 0.06 d | 1.07 ± 0.52 d | 0.80 ± 0.21 d | 0.37 ± 0.09 d | 0.70 ± 0.20 d | 0.16 ± 0.03 d | 0.12 ± 0.04 d |
Peak | RT (min) | Measured m/z | Formula | Proposed Compound | Library Score % |
---|---|---|---|---|---|
Prosopis juliflora | |||||
11 | 1.15 | 110.0575 | C6H7NO | Hydroxymethylpyridine | 28.6 |
25 | 1.16 | 118.0832 | C5H11NO2 | Betaine | 100.0 |
34 | 2.89 | 122.0933 | C8H11N | 2-Phenethylamine | 99.8 |
35 | 2.16 | 123.0521 | C6H6N2O | Nicotinamide | 88.4 |
41 | 2.13 | 136.0580 | C5H5N5 | Adenine | 98.4 |
45 | 2.75 | 138.0878 | C8H11NO | Apophedrin | 92.4 |
128 | 3.03 | 180.0978 | (C5H8O2)n | Poly (methyl methacrylate) PMMA | 29.2 |
130 | 3.05 | 170.0773 | C8H11NO3 | Pyridoxine | 84 |
131 | 3.28 | 170.1136 | C9H15NO2 | Aceclidine | 50.4 |
379 | 5.35 | 275.1937 | C18H26O2 | Nandrolone | 25.6 |
546 | 3.42 | 268.0981 | C10H13N5O4 | Adenosine | 93.2 |
612 | 3.92 | 279.1732 | C15H22N2O3 | Tolycaine | 60.5 |
Ipomoea carnea | |||||
20 | 1.88 | 74.0965 | C4H11N | 2-Butanamine | 97.7 |
38 | 4.47 | 309.1308 | C19H16S | Triphenylmethanethiol | 99.4 |
49 | 4.47 | 273.1080 | C11H16N2O6 | 4’-Methoxythymidine | 97.3 |
50 | 4.53 | 303.1036 | C8H18N2O10 | Azane | 95.4 |
119 | 4.94 | 60.0808 | C3H9N | Trimethylamine | 97.8 |
169 | 7.38 | 287.1615 | C14H18N6O | Abacavir | 99.8 |
203 | 8.75 | 597.4358 | C34H60O8 | Sorangiolide B | 97.1 |
211 | 8.81 | 287.0563 | C16H6N4O2 | Dicyanoanthraquino Nediimine | 99.8 |
238 | 9.53 | 107.0855 | C8H10 | O-Xylene | 99.3 |
292 | 10.50 | 449.1102 | C23H20N4O2S2 | Glioclatine | 95.5 |
Leucaena leucocephala | |||||
34 | 4.55 | 300.0896 | C17H15N3 | Yellow OB | 97.0 |
118 | 4.97 | 58.0651 | C3H7N | Propyleneimine | 98.9 |
119 | 4.96 | 60.0808 | C3H9N | Trimethylamine | 95.9 |
203 | 8.76 | 597.4360 | C34H60O8 | Sorangiolide B | 99.5 |
343 | 11.47 | 287.0565 | C16H6N4O2 | Dicyanoanthraquino Nediimine | 97.3 |
522 | 15.67 | 341.1973 | C19H24N4O2 | Pentamidine | 95.2 |
533 | 15.90 | 286.1396 | C11H15N3O4 | Pyricarbate | 96.3 |
699 | 18.31 | 279.1450 | C13H18N4O3 | Pentoxifylline | 95.8 |
707 | 18.21 | 335.2427 | C17H34O6 | Undecyl Glucoside | 95.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.M.; Novak, S.J.; Fictor, M.; Mostafa, Y.S.; Alamri, S.A.; Alrumman, S.A.; Taher, M.A.; Hashem, M.; Khalaphallah, R. Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species. Agriculture 2022, 12, 1152. https://doi.org/10.3390/agriculture12081152
Abbas AM, Novak SJ, Fictor M, Mostafa YS, Alamri SA, Alrumman SA, Taher MA, Hashem M, Khalaphallah R. Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species. Agriculture. 2022; 12(8):1152. https://doi.org/10.3390/agriculture12081152
Chicago/Turabian StyleAbbas, Ahmed M., Stephen J. Novak, Mahmoud Fictor, Yasser S. Mostafa, Saad A. Alamri, Sulaiman A. Alrumman, Mostafa A. Taher, Mohamed Hashem, and Rafat Khalaphallah. 2022. "Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species" Agriculture 12, no. 8: 1152. https://doi.org/10.3390/agriculture12081152
APA StyleAbbas, A. M., Novak, S. J., Fictor, M., Mostafa, Y. S., Alamri, S. A., Alrumman, S. A., Taher, M. A., Hashem, M., & Khalaphallah, R. (2022). Initial In Vitro Assessment of the Antifungal Activity of Aqueous Extracts from Three Invasive Plant Species. Agriculture, 12(8), 1152. https://doi.org/10.3390/agriculture12081152