LED Lighting Agrosystem with Parallel Power Supply from Photovoltaic Modules and a Power Grid
Abstract
:1. Introduction
2. Materials and Methods
- PCB with a microcontroller;
- Digital seven-segment indicator for visual continuous monitoring of the system operation parameters;
- Membrane keyboard for switching modes and displayed information;
- Real-time clock for logging the time;
- Memory card module for interaction of the microcontroller with the SD card;
- Current and voltage sensors INA226 for converting electrical parameters of the system into data;
- Backup power source based on a lithium-ion battery for uninterrupted operation of the system when the network and/or PVM are disconnected.
- The system logs data with an interval of one second.
3. Results
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
DC | Direct current |
GW | Gigawatt |
LED | Light-emitting diode |
MPPT | Maximum power point tracking |
PVM | Photovoltaic modules |
SI | Solar irradiation |
VAC | Volt-ampere characteristics |
VWC | Volt-watt characteristics |
References
- Global Market Outlook for Solar Power 2021–2025/Michael Schmela, Walburga Hemetsberger, Gianni Chianetta; SolarPower Europe: Belgium, Brussels, 2021; p. 136. ISBN 9789464073492. Available online: https://www.solarpowereurope.org (accessed on 25 May 2022).
- Renewables 2021 Global Status Report/Lisa Mastny, Leah Brumer–France, Paris: REN21. 2021, p. 371. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed on 27 May 2022).
- PHOTOVOLTAICS REPORT/Bruno Burger, Lorenz Friedrich, Christoph Kost, and Others. Fraunhofer Institute for Solar Energy Systems ISE. 2021, p. 51. Available online: https://www.ise.fraunhofer.de (accessed on 23 May 2022).
- Chakraborty, A. Advancements in power electronics and drives in interface with growing renewable energy resources. Renew. Sustain. Energy Rev. 2011, 15, 1816–1827. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-W.; Fu, Z.-W. The Potential of Na–Air Batteries. ChemCatChem 2016, 9, 1545–1553. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Opiyo, N.N. A comparison of DC- versus AC-based minigrids for cost-effective electrification of rural developing communities. Energy Rep. 2019, 5, 398–408. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Planas, E.; Andreu, J.; Garate, J.I.; de Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Tikhonov, P.V.; Mayorov, V.A.; Morenko, K.S. Energy-Saving Systems Using Photovoltaic Modules. In Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering; Kharchenko, V., Vasant, P., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 464–485. [Google Scholar] [CrossRef]
- Tikhonov, P.V. The Energy-Saving System of LED Lighting with Parallel Power Supply by Photovoltaic Modules and Power Supply Network. Light Eng. 2020, 28, 36–40. [Google Scholar] [CrossRef]
- Noroozian, R.; Abedi, M.; Gharehpetian, G.; Hosseini, S. Combined operation of DC isolated distribution and PV systems for supplying unbalanced AC loads. Renew. Energy 2009, 34, 899–908. [Google Scholar] [CrossRef]
- Kwasinski, A. Quantitative Evaluation of DC Microgrids Availability: Effects of System Architecture and Converter Topology Design Choices. IEEE Trans. Power Electron. 2010, 26, 835–851. [Google Scholar] [CrossRef]
- Wang, B.; Sechilariu, M.; Locment, F. Intelligent DC Microgrid with Smart Grid Communications: Control Strategy Consideration and Design. IEEE Trans. Smart Grid 2012, 3, 2148–2156. [Google Scholar] [CrossRef]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2016, 31, 4876–4891. [Google Scholar] [CrossRef]
- Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 2015, 31, 3528–3549. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089. [Google Scholar] [CrossRef]
- Murari, K.; Padhy, N.P. Framework for Assessing the Economic Impacts of AC-DC Distribution Network on the Consumers. In Proceedings of the IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga-Technical-University–2018, Riga, Latvia, 12–13 November 2018. [Google Scholar]
- Ahrabi, R.R.; Li, Y.W.; Nejabatkhah, F. Hybrid AC/DC Network with Parallel LCC-VSC Interlinking Converters. IEEE Trans. Power Syst. 2020, 36, 722–731. [Google Scholar] [CrossRef]
- Sannino, A.; Postiglione, G.; Bollen, M. Feasibility of a DC network for commercial facilities. IEEE Trans. Ind. Appl. 2003, 39, 1499–1507. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X. Research on DC Micro-grid system of photovoltaic power generation. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 052041. [Google Scholar] [CrossRef]
- Gago-Calderón, A.; Orejón-Sánchez, R.D.; Hermoso-Orzáez, M.J. DC Network Indoor and Outdoor LED Lighting. In Light Emitting Diode; Sastra University: Tamil Nadu, India, 2018; pp. 2–22. [Google Scholar] [CrossRef]
- INA226 Datasheet—Texas Instruments. Available online: https://www.ti.com/lit/ds/symlink/ina226.pdf (accessed on 27 May 2022).
- UT61E Modern Digital Multimeter English Manual; Uni-Trend Technology (China) Co., Ltd.: Dongguan, China; Available online: https://www.uni-trend.com/uploadfile/cloud/English%20manual/General%20Meters/UT61%20English%20Manual.pdf (accessed on 25 May 2022).
- Pyranometer GSM/O-U10.FuehlerSysteme eNET International. Available online: https://fuehler-systeme.ru/images/files/188/GSM_O_Oпиcaниe.pdf (accessed on 23 May 2022).
- Komissarov, N.S. LED Lighting System with Parallel Power Supply from Photovoltaic Modules and AC Power. Master’s Thesis, Federal Scientific Agroengineering Center VIM, Moscow, Russia, 2021; 81p. (In Russian). [Google Scholar]
- Mironyuk, S.S.; Smirnov, A.; Sokolov, A.; Proshkin, Y. Optimization of spectral composition and energy economy effectiveness of phyto-irradiators with use of digital technologies. In Handbook of Research on Energy-Saving Technologies for Environmentally-Friendly Agricultural Development; IGI-Global: Hershey, PA, USA, 2020; pp. 191–212. [Google Scholar]
N | Equipment | Voltage, V (Input/Output) | Current, A | Power, W |
---|---|---|---|---|
1 | Step-up converter QSKJ QS-1224CCBD | 10–35/12–35 | 10 | 100 |
2 | Current stabilizer (step-down converter) QSKJ QS-2405CCBD | 7–40/1.2–35 | 8 | 200 |
3 | Power supply unit XD-DC 2425 | ~230/35 | 7 | - |
4 | LED line LEDPREMIUM | 28–35 B | 0.3 | 10 |
5 | Schottky diodes 90SQ045 | 45 B | 9 | - |
Device | Measured Value | Range | Accuracy |
---|---|---|---|
Multimeter UT61E | Voltage DC | 0…220 mV | ±(0.1% + 5) |
0…220 V | ±(0.1% + 2) | ||
INA226 | Voltage | 0…36 V | ±0.1% |
Pyranometer GSM/O-U10 | Solar radiation intensity | 0…1300 W/m2 | ±10% |
Arduino | Voltage | 0…5 V | ±2 LSB (±0.01 V) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhonov, P.; Morenko, K.; Sychov, A.; Bolshev, V.; Sokolov, A.; Smirnov, A. LED Lighting Agrosystem with Parallel Power Supply from Photovoltaic Modules and a Power Grid. Agriculture 2022, 12, 1215. https://doi.org/10.3390/agriculture12081215
Tikhonov P, Morenko K, Sychov A, Bolshev V, Sokolov A, Smirnov A. LED Lighting Agrosystem with Parallel Power Supply from Photovoltaic Modules and a Power Grid. Agriculture. 2022; 12(8):1215. https://doi.org/10.3390/agriculture12081215
Chicago/Turabian StyleTikhonov, Pavel, Konstantin Morenko, Arseniy Sychov, Vadim Bolshev, Alexander Sokolov, and Alexander Smirnov. 2022. "LED Lighting Agrosystem with Parallel Power Supply from Photovoltaic Modules and a Power Grid" Agriculture 12, no. 8: 1215. https://doi.org/10.3390/agriculture12081215
APA StyleTikhonov, P., Morenko, K., Sychov, A., Bolshev, V., Sokolov, A., & Smirnov, A. (2022). LED Lighting Agrosystem with Parallel Power Supply from Photovoltaic Modules and a Power Grid. Agriculture, 12(8), 1215. https://doi.org/10.3390/agriculture12081215