Comparison of Three Cooling Methods (Hydrocooling, Forced-Air Cooling and Slush Icing) and Plastic Overwrap on Broccoli Quality during Simulated Commercial Handling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cooling Treatments
2.2. Nondestructive Analyses
2.3. Destructive Analyses
2.4. Statistical Analyses
3. Results
3.1. Nondestructive Analyses
3.2. Destructive Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA-ARS. Food Data Central. Nutrients, Broccoli, Raw. 2019. Available online: https://fdc.nal.usda.gov/fdc-app.html-/food-details/170379/nutrients (accessed on 28 June 2022).
- Kresin, J.M. Broccoli climbs to No. 6 on 2022 Fresh Trends Data. The Packer. 2022. Available online: https://www.thepacker.com/news/retail/broccoli-climbs-no-6-2022-fresh-trends-data (accessed on 18 July 2022).
- Davis, W.V.; Weber, C.; Lucier, G.; Gallagher, N. Vegetables and Pulses Outlook VGS-368. USDA Economic Research Service. 2022. Available online: https://www.ers.usda.gov/webdocs/outlooks/103821/vgs-368.pdf?v=9164.2 (accessed on 19 August 2022).
- Geisseler, D.; Horwath, W. Broccoli production in California. In Assessment of Plant Fertility and Fertilizer Requirements for Agricultural Crops in California; California Department of Food and Agriculture Fertilizer Research and Education Program (FREP), University of California: Davis, CA, USA, 2016. Available online: https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Broccoli_Production_CA.pdf (accessed on 18 July 2022).
- Atallah, S.S.; Gómez, M.I.; Björkman, T. Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy 2014, 49, 151–159. [Google Scholar]
- New World Encyclopedia (NEW). ‘Broccoli’, New World Encyclopedia Contributors. 2008. Available online: http://www.newworldencyclopedia.org/p/index.php?title=Broccoli&oldid=823964 (accessed on 30 May 2019).
- Stephens, J.M. Broccoli—Brassica Oleracea L. (Italica Group). University of Florida Cooperative Extension Service, Institute of Food and Agri-Cultural Sciences. 1994. Available online: https://edis.ifas.ufl.edu/publication/MV031 (accessed on 30 May 2019).
- Farnham, M.W.; Björkman, T. Evaluation of experimental broccoli hybrids developed for summer production in the eastern united states. HortScience 2011, 46, 858–863. [Google Scholar] [CrossRef] [Green Version]
- Heyes, J.; Bucknell, T.; Clark, C. Water loss and quality loss during post-harvest storage of asparagus and broccoli: A magnetic resonance imaging study. Acta Hortic. 2000, 553, 491–494. [Google Scholar] [CrossRef]
- Hardenburg, R.E.; Wright, R.C.; Rose, D.H.; Watada, A.E.; Whiteman, T.M.; Wang, C.Y. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks (No. 66). US Department of Agriculture, Agri-cultural Research Service. 2016. Available online: https://www.ars.usda.gov/arsuserfiles/oc/np/commercialstorage/commercialstorage.pdf (accessed on 4 February 2022).
- Deschene, A.; Paliyath, G.; Lougheed, E.; Dumbroff, E.; Thompson, J. Membrane deterioration during postharvest senescence of broccoli florets: Modulation by temperature and controlled atmosphere storage. Postharvest Biol. Technol. 1991, 1, 19–31. [Google Scholar] [CrossRef]
- Toivonen, P.M. The effects of storage temperature, storage duration, hydro-cooling, and micro-perforated wrap on shelf life of broccoli (Brassica Oleracea L., Italica Group). Postharvest Biol. Technol. 1997, 10, 59–65. [Google Scholar] [CrossRef]
- Fernández-León, M.; Fernández-León, A.; Lozano, M.; Ayuso, M.; Amodio, M.L.; Colelli, G.; González-Gómez, D. Retention of quality and functional values of broccoli ‘parthenon’ stored in modified atmosphere packaging. Food Control. 2013, 31, 302–313. [Google Scholar] [CrossRef]
- Fernández-León, M.; Fernández-León, A.; Lozano, M.; Ayuso, M.; González-Gómez, D. Different postharvest strategies to preserve broccoli quality during storage and shelf life: Controlled atmosphere and 1-MCP. Food Chem. 2013, 138, 564–573. [Google Scholar] [CrossRef]
- Dirapan, P.; Boonyakiat, D.; Poonlarp, P. Improving shelf life, maintaining quality, and delaying microbial growth of broccoli in supply chain using commercial vacuum cooling and package icing. Horticulturae 2021, 7, 506. [Google Scholar] [CrossRef]
- Thompson, J.F.; Mitchell, F.G.; Rumsay, T.R.; Kasmire, R.F.; Crisosto, C.H. Commercial Cooling of Fruits, Vegetables, and Flowers; University of California Agriculture and Natural Resources Publication 21567: Oakland, CA, USA, 2008. [Google Scholar]
- Kader, A.A.; Cantwell, M. Produce Quality Rating Scales and Color Charts, 2nd ed.; Postharvest Technology Research and Information Center, University of California: Davis, CA, USA, 2006. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Terada, M.; Watanabe, Y.; Kunitomo, M.; Hayashi, E. Differential rapid analysis of ascorbic acid and ascorbic acid 2-sulfate by dinitrophenylhydrazine method. Anal. Biochem. 1978, 84, 604–608. [Google Scholar] [CrossRef]
- Talcott, S.; Howard, L. Phenolic autoxidation is responsible for color degradation in processed carrot puree. J. Agric. Food Chem. 1999, 47, 2109–2115. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Tomkins, B.; Nicolas, M.E.; Premier, R.R.; Bennett, R.N.; Eagling, D.R.; Taylor, P.W. The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. Italica). J. Agric. Food Chem. 2002, 50, 7386–7391. [Google Scholar] [CrossRef]
- Toivonen, P.; Sweeney, M. Differences in chlorophyll loss at 13 degrees c for two broccoli (Brassica oleracea L.) cultivars associated with antioxidant enzyme activities. J. Agric. Food Chem. 1998, 46, 20–24. [Google Scholar] [CrossRef]
- Singh, S.; Rai, A.K.; Alam, T.; Singh, B. Influence of modified atmosphere packaging (MAP) on the shelf life and quality of broccoli during storage. J. Packag. Technol. Res. 2018, 2, 105–113. [Google Scholar] [CrossRef]
- Galgano, F.; Favati, F.; Caruso, M.; Pietrafesa, A.; Natella, S. The influence of processing and preservation on the retention of health-promoting compounds in broccoli. J. Food Sci. 2007, 2, 130–135. [Google Scholar] [CrossRef]
- Barth, M.M.; Zhuang, H. Packaging design affects antioxidant vitamin retention and quality of broccoli florets during postharvest storage. Postharvest Biol. Technol. 1996, 9, 141–150. [Google Scholar] [CrossRef]
- Gross, J. Pigments in Vegetables: Chlorophylls and Carotenoids; Springer Science & Business Media: New York, NY, USA, 1991. [Google Scholar]
- Leja, M.; Mareczek, A.; Starzyńska, A.; Rożek, S. Antioxidant ability of broccoli flower buds during short-term storage. Food Chem. 2001, 72, 219–222. [Google Scholar] [CrossRef]
- Oszmianski, J.; Lee, C.Y. Inhibitory effect of phenolics on carotene bleaching in vegetables. J. Agric. Food Chem. 1990, 38, 688–690. [Google Scholar]
- Raseetha, S.; Nadirah, S. Effect of different packaging materials on quality of fresh-cut broccoli and cauliflower at chilled temperature. Int. Food Res. J. 2018, 25, 1559–1565. [Google Scholar]
- Vallejo, F.; Tomás-Barberán, F.; García-Viguera, C. Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J. Agric. Food Chem. 2003, 51, 3029–3034. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, A.; Stark, R.; Selman, J. Modified atmosphere packaging of broccoli florets. Int. J. Food Sci. Technol. 1988, 23, 353–360. [Google Scholar] [CrossRef]
Cultivar | Day 0 | Day 7 | Day 11 | Day 15 |
---|---|---|---|---|
Overall appearance rating | ||||
Marathon | 8.7 bA z | 7.4 bB | 6.4 bC | 5.4 bD |
Eastern Crown | 9.0 aA | 7.8 aB | 6.9 aC | 6.2 aD |
Chroma (C*) y | ||||
Marathon | 23.1 aA | 23.1 aA | 21.7 aA | 21.4 aA |
Eastern Crown | 16.2 bA | 16.9 bA | 16.3 bA | 17.1 bA |
Hue angle (h*) y | ||||
Marathon | 121.8 bB | 122.7 bAB | 123.4 bA | 122.3 bB |
Eastern Crown | 129.7 aAB | 128.9 aBC | 130.0 aA | 128.1 aC |
Cultivar | Cooling Method z | Compression Force (N) during Storage | |||
---|---|---|---|---|---|
Day 0 | Day 7 | Day 11 | Day 15 | ||
Marathon | HY | 68.8 aA y | 56.1 aAB | 47.3 aB | 49.8 aB |
FA | 68.8 aA | 55.9 aAB | 47.9 aB | 45.6 aB | |
SI | 68.8 aA | 52.5 aB | 20.7 bC | 27.9 bC | |
Eastern Crown | HY | 64.9 aA | 66.9 aA | 69.6 aA | 58.9 aA |
FA | 64.9 aA | 52.7 aAB | 50.5 bB | 52.2 aAB | |
SI | 64.9 aA | 25.7 bB | 28.2 cB | 20.4 bB |
Cultivar | Cooling Method z | Total Carotenoid Content (mg/100 g FW) | |||
---|---|---|---|---|---|
Day 0 | Day 7 | Day 11 | Day 15 | ||
Marathon | HY | 2.28 aA y | 1.25 aB | 1.44 abB | 1.04 cB |
FA | 2.28 aA | 1.38 aB | 1.55 aB | 1.40 bB | |
SI | 2.28 aA | 1.48 aB | 0.98 bC | 1.70 aB | |
Eastern Crown | HY | 2.26 aA | 1.65 aB | 1.70 bB | 2.03 aAB |
FA | 2.26 aA | 1.72 aB | 2.12 abAB | 1.95 aAB | |
SI | 2.26 aAB | 2.04 aB | 2.76 aA | 1.95 aB |
Cultivar | Day 0 | Day 7 | Day 11 | Day 15 |
---|---|---|---|---|
Total Chlorophyll (mg/100 g FW) | ||||
Marathon | 25.8 aA z | 20.7 aB | 23.3 aB | 23.7 aB |
Eastern Crown | 20.7 bA | 19.7 aA | 23.9 aA | 22.8 aA |
Ascorbic acid (mg/100 g FW) | ||||
Marathon | 88.6 bA | 87.2 bA | 89.7 bA | 80.7 bB |
Eastern Crown | 101.9 aA | 101.5 aA | 96.6 aAB | 92.0 aB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodore, C.; Sargent, S.A.; Brecht, J.K.; Zotarelli, L.; Berry, A.D. Comparison of Three Cooling Methods (Hydrocooling, Forced-Air Cooling and Slush Icing) and Plastic Overwrap on Broccoli Quality during Simulated Commercial Handling. Agriculture 2022, 12, 1272. https://doi.org/10.3390/agriculture12081272
Theodore C, Sargent SA, Brecht JK, Zotarelli L, Berry AD. Comparison of Three Cooling Methods (Hydrocooling, Forced-Air Cooling and Slush Icing) and Plastic Overwrap on Broccoli Quality during Simulated Commercial Handling. Agriculture. 2022; 12(8):1272. https://doi.org/10.3390/agriculture12081272
Chicago/Turabian StyleTheodore, Carina, Steven A. Sargent, Jeffrey K. Brecht, Lincoln Zotarelli, and Adrian D. Berry. 2022. "Comparison of Three Cooling Methods (Hydrocooling, Forced-Air Cooling and Slush Icing) and Plastic Overwrap on Broccoli Quality during Simulated Commercial Handling" Agriculture 12, no. 8: 1272. https://doi.org/10.3390/agriculture12081272
APA StyleTheodore, C., Sargent, S. A., Brecht, J. K., Zotarelli, L., & Berry, A. D. (2022). Comparison of Three Cooling Methods (Hydrocooling, Forced-Air Cooling and Slush Icing) and Plastic Overwrap on Broccoli Quality during Simulated Commercial Handling. Agriculture, 12(8), 1272. https://doi.org/10.3390/agriculture12081272