Comparative Analysis of Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers for Apple Production in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources
2.2. Methodology of Life Cycle Assessment
2.2.1. Goal and Scope Definition
2.2.2. Inventory Analysis
2.2.3. Impact Assessment
2.2.4. Interpretation
2.3. Life Cycle Cost Analysis
3. Results
3.1. Energy and Land Consumption
3.2. Characterization of Pollutant Emission
3.3. Characterization of Toxicity
3.4. Total Environmental Impacts
3.5. Life Cycle Cost and Net Profit
4. Discussion
4.1. Comparison with Literature
4.2. Limitations and Future Research
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dorward, A.; Kydd, J.; Morrison, J.; Urey, I. A Policy Agenda for Pro-Poor Agricultural Growth. World Dev. 2004, 32, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Zheng, H.; Yuan, P. Impacts of Cooperative Membership on Banana Yield and Risk Exposure: Insights from China. J. Agric. Econ. 2021, 1477–9552, 12465. [Google Scholar] [CrossRef]
- Markelova, H.; Meinzen-Dick, R.; Hellin, J.; Dohrn, S. Collective Action for Smallholder Market Access. Food Policy 2009, 34, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Blekking, J.; Gatti, N.; Waldman, K.; Evans, T.; Baylis, K. The Benefits and Limitations of Agricultural Input Cooperatives in Zambia. World Dev. 2021, 146, 105616. [Google Scholar] [CrossRef]
- Manda, J.; Khonje, M.G.; Alene, A.D.; Tufa, A.H.; Abdoulaye, T.; Mutenje, M.; Setimela, P.; Manyong, V. Does Cooperative Membership Increase and Accelerate Agricultural Technology Adoption? Empirical Evidence from Zambia. Technol. Forecast. Soc. Chang. 2020, 158, 120160. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The Effect of Cooperative Membership on Agricultural Technology Adoption in Sichuan, China. China Econ. Rev. 2020, 62, 101334. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The Impact of Cooperatives on Agricultural Technology Adoption: Empirical Evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Fischer, E.; Qaim, M. Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya. World Dev. 2012, 40, 1255–1268. [Google Scholar] [CrossRef] [Green Version]
- Ortega, D.L.; Bro, A.S.; Clay, D.C.; Lopez, M.C.; Tuyisenge, E.; Church, R.A.; Bizoza, A.R. Cooperative Membership and Coffee Productivity in Rwanda’s Specialty Coffee Sector. Food Secur. 2019, 11, 967–979. [Google Scholar] [CrossRef]
- Trebbin, A. Linking Small Farmers to Modern Retail through Producer Organizations–Experiences with Producer Companies in India. Food Policy 2014, 45, 35–44. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhao, X.; Zhang, L.; Yuan, K. Estimating Effects of Cooperative Membership on Farmers’ Safe Production Behaviors: Evidence from the Rice Sector in China. Environ. Sci. Pollut. Res. 2021, 28, 25400–25418. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Wang, H.; Rahman, A.; Qian, L.; Memon, W.H. Evaluating the Roles of the Farmer’s Cooperative for Fostering Environmentally Friendly Production Technologies-a Case of Kiwi-Fruit Farmers in Meixian, China. J. Environ. Manag. 2022, 301, 113858. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, C.; Niu, Z.; Gao, Y.; Yang, H.; Xue, Z. Risk Aversion, Cooperative Membership and the Adoption of Green Control Techniques: Evidence from China. J. Clean. Prod. 2021, 279, 123288. [Google Scholar] [CrossRef]
- Deng, L.; Chen, L.; Zhao, J.; Wang, R. Comparative Analysis on Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers: The Case of Grape Production in Hebei, China. PLoS ONE 2021, 16, e0245981. [Google Scholar] [CrossRef]
- Saitone, T.L.; Sexton, R.J. Agri-Food Supply Chain: Evolution and Performance with Conflicting Consumer and Societal Demands. Eur. Rev. Agric. Econ. 2017, 44, 634–657. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does Cooperative Membership Improve Household Welfare? Evidence from Apple Farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Gong, T.; Zhang, H. Life Cycle Assessment of Wheat-Maize Rotation System Emphasizing High Crop Yield and High Resource Use Efficiency in Quzhou County. J. Clean. Prod. 2014, 68, 56–63. [Google Scholar] [CrossRef]
- Cordes, H.; Iriarte, A.; Villalobos, P. Evaluating the Carbon Footprint of Chilean Organic Blueberry Production. Int. J. Life Cycle Assess. 2016, 21, 281–292. [Google Scholar] [CrossRef]
- Goossens, Y.; Annaert, B.; De Tavernier, J.; Mathijs, E.; Keulemans, W.; Geeraerd, A. Life Cycle Assessment (LCA) for Apple Orchard Production Systems Including Low and High Productive Years in Conventional, Integrated and Organic Farms. Agric. Syst. 2017, 153, 81–93. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Zhang, J. Ratoon Rice Production in Central China: Environmental Sustainability and Food Production. Sci. Total Environ. 2021, 764, 142850. [Google Scholar] [CrossRef]
- Coppola, G.; Costantini, M.; Fusi, A.; Ruiz-Garcia, L.; Bacenetti, J. Comparative Life Cycle Assessment of Conventional and Organic Hazelnuts Production Systems in Central Italy. Sci. Total Environ. 2022, 826, 154107. [Google Scholar] [CrossRef] [PubMed]
- Keyes, S.; Tyedmers, P.; Beazley, K. Evaluating the Environmental Impacts of Conventional and Organic Apple Production in Nova Scotia, Canada, through Life Cycle Assessment. J. Clean. Prod. 2015, 104, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Alaphilippe, A.; Boissy, J.; Simon, S.; Godard, C. Environmental Impact of Intensive versus Semi-Extensive Apple Orchards: Use of a Specific Methodological Framework for Life Cycle Assessments (LCA) in Perennial Crops. J. Clean. Prod. 2016, 127, 555–561. [Google Scholar] [CrossRef]
- Zhu, Z.; Jia, Z.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.; Ge, S. Life Cycle Assessment of Conventional and Organic Apple Production Systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- Khanali, M.; Kokei, D.; Aghbashlo, M.; Nasab, F.K.; Hosseinzadeh-Bandbafha, H.; Tabatabaei, M. Energy Flow Modeling and Life Cycle Assessment of Apple Juice Production: Recommendations for Renewable Energies Implementation and Climate Change Mitigation. J. Clean. Prod. 2020, 246, 118997. [Google Scholar] [CrossRef]
- Mathis, M.; Blom, J.F.; Nemecek, T.; Bravin, E.; Jeanneret, P.; Daniel, O.; de Baan, L. Comparison of Exemplary Crop Protection Strategies in Swiss Apple Production: Multi-Criteria Assessment of Pesticide Use, Ecotoxicological Risks, Environmental and Economic Impacts. Sustain. Prod. Consum. 2022, 31, 512–528. [Google Scholar] [CrossRef]
- Liang, L. Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies; China Agricultural University: Beijing, China, 2009. [Google Scholar]
- Cheng, J.; Wang, Q.; Yu, J.; Yoshikawa, N. Evaluation of Environmental Efficiency of Apple Production Based on LCA and SBM Models. J. Arid Land Resour. Environ. 2022, 36, 36–43. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Y.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Wang, L.; Zhao, G. Agricultural Subsidies Assessment of Cropping System from Environmental and Economic Perspectives in North China Based on LCA. Ecol. Indic. 2019, 96, 351–360. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G. Life Cycle Assessment of Potential Pollutant-Induced Human Capital Loss Caused by Different Agricultural Production Systems in Beijing, China. J. Clean. Prod. 2019, 240, 118141. [Google Scholar] [CrossRef]
- Annaert, B.; Goossens, Y.; Geeraerd, A.; Mathijs, E.; Vranken, L. Calculating Environmental Cost Indicators of Apple Farm Practices Indicates Large Differences between Growers. Int. J. Agric. Sustain. 2017, 15, 527–538. [Google Scholar] [CrossRef]
- Longo, S.; Mistretta, M.; Guarino, F.; Cellura, M. Life Cycle Assessment of Organic and Conventional Apple Supply Chains in the North of Italy. J. Clean. Prod. 2017, 140, 654–663. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Donno, D.; Beccaro, G.L.; Bounous, G. Environmental Sustainability of Traditional Foods: The Case of Ancient Apple Cultivars in Northern Italy Assessed by Multifunctional LCA. J. Clean. Prod. 2013, 52, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Bartzas, G.; Vamvuka, D.; Komnitsas, K. Comparative Life Cycle Assessment of Pistachio, Almond and Apple Production. Inf. Process. Agric. 2017, 4, 188–198. [Google Scholar] [CrossRef]
- Svanes, E.; Johnsen, F.M. Environmental Life Cycle Assessment of Production, Processing, Distribution and Consumption of Apples, Sweet Cherries and Plums from Conventional Agriculture in Norway. J. Clean. Prod. 2019, 238, 117773. [Google Scholar] [CrossRef]
- Vinyes, E.; Asin, L.; Alegre, S.; Muñoz, P.; Boschmonart, J.; Gasol, C.M. Life Cycle Assessment of Apple and Peach Production, Distribution and Consumption in Mediterranean Fruit Sector. J. Clean. Prod. 2017, 149, 313–320. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Zabala, J.A.; Sánchez-Navarro, V.; Gallego-Elvira, B.; Martínez-García, V.; Alcon, F.; Maestre-Valero, J.F. Intercropping Practices in Mediterranean Mandarin Orchards from an Environmental and Economic Perspective. Agriculture 2022, 12, 574. [Google Scholar] [CrossRef]
- Fathollahi, A.; Coupe, S.J. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of Road Drainage Systems for Sustainability Evaluation: Quantifying the Contribution of Different Life Cycle Phases. Sci. Total Environ. 2021, 776, 145937. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, Y.; Hu, K.; Chen, J.; Djomo, S.N.; Yang, X.; Knudsen, M.T. Economic, Environmental, and Emergy Analysis of China’s Green Tea Production. Sustain. Prod. Consum. 2021, 28, 269–280. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Matsuda, T.; Amano, K. Life Cycle Environmental and Economic Impact of a Food Waste Recycling-Farming System: A Case Study of Organic Vegetable Farming in Japan. Int. J. Life Cycle Assess. 2021, 26, 963–976. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, S.; Liu, F.; Ji, P.; Wang, X.; Tong, Y. Effects of Chemical Fertilizer Combined with Organic Manure on Fuji Apple Quality, Yield and Soil Fertility in Apple Orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 2014, 7, 45–55. [Google Scholar] [CrossRef]
- Saber, Z.; Esmaeili, M.; Pirdashti, H.; Motevali, A.; Nabavi-Pelesaraei, A. Exergoenvironmental-Life Cycle Cost Analysis for Conventional, Low External Input and Organic Systems of Rice Paddy Production. J. Clean. Prod. 2020, 263, 121529. [Google Scholar] [CrossRef]
- Hesampour, R.; Taki, M.; Fathi, R.; Hassani, M.; Halog, A. Energy-Economic-Environmental Cycle Evaluation Comparing Two Polyethylene and Polycarbonate Plastic Greenhouses in Cucumber Production (from Production to Packaging and Distribution). Sci. Total Environ. 2022, 828, 154232. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, Q.; Yu, J. Life Cycle Assessment of Concentrated Apple Juice Production in China: Mitigation Options to Reduce the Environmental Burden. Sustain. Prod. Consum. 2022, 32, 15–26. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Latunussa, C.; Vélu, A.; Heitz, H.; Vannière, H.; Caliman, J.-P. Partial Modelling of the Perennial Crop Cycle Misleads LCA Results in Two Contrasted Case Studies. Int. J. Life Cycle Assess. 2016, 21, 297–310. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Tran, T.; Benoist, A. LCA Applied to Perennial Cropping Systems: A Review Focused on the Farm Stage. Int. J. Life Cycle Assess. 2013, 18, 340–361. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life Cycle Assessment Application in the Fruit Sector: State of the Art and Recommendations for Environmental Declarations of Fruit Products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Moreira, M.T.; Feijoo, G. Environmental Analysis of Ribeiro Wine from a Timeline Perspective: Harvest Year Matters When Reporting Environmental Impacts. J. Environ. Manag. 2012, 98, 73–83. [Google Scholar] [CrossRef]
- Ge, S.; Peng, L.; Ren, Y.; Jiang, Y. Effect of Straw and Biochar on Soil Bulk Density, Cation Exchange Capacity and Nitrogen Absorption in Apple Orchard Soil. Sci. Agric. Sin. 2014, 47, 366–373. [Google Scholar] [CrossRef]
- Wen, M.; Zheng, W.; Zhao, Z.; Wang, G.; Zhai, B.; Wang, Z. Effects of Different Fertilizer Treatments Combined with Green Manure Intercropping on Water and Thermal Properties and Nitrate Accumulation in Soils of Apple Orchard. J. Agric. Environ. Sci. 2016, 35, 1119–1128. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Kuhlmann, H.; Lammel, J. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment Methodology. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Lu, X.; Yue, Y.; Zhao, Z.; Zhang, H.; Zhao, Q.; Cao, L. Phosphorus Loss and Migration Characteristics in Paddy Fields under Different Fertilization Treatments. Chin. J. Eco-Agric. 2014, 22, 394–400. [Google Scholar]
- Ji, C.; Ding, M.; Wang, B.; Wang, C.; Zhao, Y. Comparative Evaluation of Chemical and Organic Fertilizer on the Base of Life Cycle Analysis Methods. Chin. J. Soil Sci. 2012, 43, 412–417. [Google Scholar] [CrossRef]
- Feng, L.; Yue, T.; Yuan, Y.; Wang, Z.; Han, X. Investigation and Risk Assessment of Heavy Metals in Apple of Shaanxi, Gansu and Shandong Provinces. Farm Prod. Process. 2017, 60–65. [Google Scholar] [CrossRef]
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide Use in Current and Innovative Apple Orchard Systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Van Calker, K.J.; Berentsen, P.B.M.; de Boer, I.M.J.; Giesen, G.W.J.; Huirne, R.B.M. An LP-Model to Analyse Economic and Ecological Sustainability on Dutch Dairy Farms: Model Presentation and Application for Experimental Farm “de Marke”. Agric. Syst. 2004, 82, 139–160. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E. System Expansion for Handling Co-Products in LCA of Sugar Cane Bio-Energy Systems: GHG Consequences of Using Molasses for Ethanol Production. Appl. Energy 2012, 89, 254–261. [Google Scholar] [CrossRef]
- Guo, X.-X.; Zhao, D.; Zhuang, M.-H.; Wang, C.; Zhang, F.-S. Fertilizer and Pesticide Reduction in Cherry Tomato Production to Achieve Multiple Environmental Benefits in Guangxi, China. Sci. Total Environ. 2021, 793, 148527. [Google Scholar] [CrossRef]
- Wang, M.; Wu, W.; Liu, W.; Bao, Y. Life Cycle Assessment of the Winter Wheat-Summer Maize Production System on the North China Plain. Int. J. Sustain. Dev. World Ecol. 2007, 14, 400–407. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Nemecek, T.; von Richthofen, J.-S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental Impacts of Introducing Grain Legumes into European Crop Rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Yadav, P.; Athanassiadis, D.; Yacout, D.M.M.; Tysklind, M.; Upadhyayula, V.K.K. Environmental Impact and Environmental Cost Assessment of Methanol Production from Wood Biomass. Environ. Pollut. 2020, 265, 114990. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, Y.; Wang, J. Adoption of Drip Fertigation System and Technical Efficiency of Cherry Tomato Farmers in Southern China. J. Clean. Prod. 2020, 275, 123980. [Google Scholar] [CrossRef]
- Jirapornvaree, I.; Suppadit, T.; Kumar, V. Assessing the Economic and Environmental Impact of Jasmine Rice Production: Life Cycle Assessment and Life Cycle Costs Analysis. J. Clean. Prod. 2021, 303, 127079. [Google Scholar] [CrossRef]
- Zhen, H.; Gao, W.; Jia, L.; Qiao, Y.; Ju, X. Environmental and Economic Life Cycle Assessment of Alternative Greenhouse Vegetable Production Farms in Peri-Urban Beijing, China. J. Clean. Prod. 2020, 269, 122380. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xin, L.; Tan, M. Farmland Marginalization and Its Drivers in Mountainous Areas of China. Sci. Total Environ. 2020, 719, 135132. [Google Scholar] [CrossRef]
- Jardine, S.L.; Lin, C.-Y.C.; Sanchirico, J.N. Measuring Benefits from a Marketing Cooperative in the Copper River Fishery. Am. J. Agric. Econ. 2014, 96, 1084–1101. [Google Scholar] [CrossRef]
- Candemir, A.; Duvaleix, S.; Latruffe, L. Agricultural Cooperatives and Farm Sustainability–a Literature Review. J. Econ. Surv. 2021, 35, 1118–1144. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Shen, S.; Wang, F.; Xue, C.; Zhang, K. Research Advances on Effect of Organic Fertilizer on Farmland Greenhouse Gas Emissions. China Soil Fertil. 2015, 1–8. [Google Scholar] [CrossRef]
- De Luca, A.I.; Iofrida, N.; Strano, A.; Falcone, G.; Gulisano, G. Social Life Cycle Assessment and Participatory Approaches: A Methodological Proposal Applied to Citrus Farming in Southern Italy: A New Methodological Proposal for Social-LCA. Integr. Environ. Assess. Manag. 2015, 11, 383–396. [Google Scholar] [CrossRef]
- Mojo, D.; Fischer, C.; Degefa, T. Social and Environmental Impacts of Agricultural Cooperatives: Evidence from Ethiopia. Int. J. Sustain. Dev. World Ecol. 2015, 22, 1–13. [Google Scholar] [CrossRef]
- Petti, L.; Sanchez Ramirez, P.K.; Traverso, M.; Ugaya, C.M.L. An Italian Tomato “Cuore Di Bue” Case Study: Challenges and Benefits Using Subcategory Assessment Method for Social Life Cycle Assessment. Int. J. Life Cycle Assess. 2018, 23, 569–580. [Google Scholar] [CrossRef]
Characteristics | Arbor Orchards |
---|---|
Cultivar | Fuji |
Planting density (number of trees/ha) | 720 |
Tree height (m) | 3.85 |
Pruning | Manual |
Between-row management | Mowing and mulching |
Irrigation system | No irrigation |
Weed, pest, and disease control | Mainly chemical |
Harvest method | Manual with garden ladder |
Lifespan (years): | 40 |
-Orchard establishment | Year 1–3 (3 years) |
-Productive stage (commercialized apples) | Year 4–40 (37 years) |
Annual average yield over the productive stage (t/ha/year) | 17.82 |
Cumulated commercialized yield over orchard whole lifetime (t/ha) | 659.34 |
Item | Unit | Mean (Standard Deviation) | |
---|---|---|---|
Smallholder Farmers | Cooperatives | ||
N | kg/ha | 414.89 (238.59) | 379.42 (297.60) |
P2O5 | kg/ha | 336.64 (219.80) | 326.28 (252.08) |
K2O | kg/ha | 289.97 (203.38) | 262.34 (212.16) |
Organic fertilizer | kg/ha | 386.21 (389.26) | 372.83 (310.35) |
Pesticide (a.i.) | kg/ha | 26.53 (21.27) | 24.18 (15.95) |
-Including copper | kg/ha | 0.66 (0.53) | 0.60 (0.40) |
-Including sulfur | kg/ha | 7.96 (6.38) | 7.26 (4.79) |
Diesel | kg/ha | 311.60 (313.89) | 289.43 (320.69) |
Electricity | kWh/ha | 2822.29 (3420.28) | 2145.04 (3213.26) |
Human labor | h/ha | 7774.34 (4769.67) | 6354.94 (3143.86) |
Yield | kg/ha | 16,532.43 (11,084.93) | 19,993.50 (13,778.6753) |
Item | Smallholder Farmers | Cooperatives | ||||
---|---|---|---|---|---|---|
Agricultural Material Production Subsystem | Farming Subsystem | Total | Agricultural Material Production Subsystem | Farming Subsystem | Total | |
Energy depletion (MJ/t) | 3699.92 | 887.57 | 4587.49 | 2924.80 | 734.16 | 3658.96 |
Land use (m2/t) | – | 604.87 | 604.87 | – | 500.17 | 500.17 |
Hydrogen carbonate (HC) | 2.41 × 10−2 | 5.58 × 10−4 | 2.46 × 10−2 | 1.89 × 10−2 | 4.65 × 10−4 | 1.94 × 10−2 |
Carbon monoxide (CO) | 0.17 | 1.21 × 10−2 | 0.18 | 0.13 | 0.01 | 0.14 |
Carbon dioxide (CO2) | 377.98 | 391.54 | 769.52 | 299.37 | 252.67 | 552.04 |
Ammonia (NH3) | 0.13 | 2.60 | 2.73 | 0.10 | 2.09 | 2.19 |
Nitrogen dioxide (N2O) | 0.01 | 1.06 | 1.07 | 0.01 | 0.85 | 0.86 |
Nitrogen oxide (NOx) | 1.26 | 0.09 | 1.35 | 1.00 | 0.08 | 1.07 |
Nitrate (NO3) | – | 6.33 | 6.33 | – | 5.11 | 5.11 |
Sulfur oxides (SOx) | 1.08 | 0.08 | 1.15 | 0.85 | 0.06 | 0.92 |
Methane (CH4) | 0.52 | – | 0.52 | 0.42 | – | 0.42 |
Total phosphate (Ptot) | 0.16 | 0.08 | 0.24 | 0.13 | 0.06 | 0.19 |
Ammonium nitrate (NH4) | 0.06 | 61.28 | 61.34 | 0.05 | 51.02 | 51.07 |
Inhalable particle matter (PM10) | 0.16 | 0.02 | 0.17 | 0.12 | 0.02 | 0.14 |
Chemical oxygen demand (COD) | 3.29 | – | 3.29 | 2.61 | – | 2.61 |
Arsenic (As) | 1.17 × 10−6 | – | 1.17 × 10−6 | 9.01 × 10−7 | – | 9.01 × 10−7 |
Copper (Cu) | 2.92 × 10−7 | 7.05 × 10−5 | 7.07 × 10−5 | 2.25 × 10−5 | 5.76 × 10−5 | 5.78 × 10−5 |
Zinc (Zn) | 1.37 × 10−6 | 1.44 × 10−3 | 1.45 × 10−3 | 1.06 × 10−6 | 1.18 × 10−3 | 1.18 × 10−3 |
Lead (Pb) | 4.24 × 10−6 | 6.11 × 10−4 | 6.15 × 10−4 | 3.27 × 10−6 | 4.95 × 10−4 | 4.98 × 10−4 |
Zinc (Zn) | 1.11 × 10−5 | 9.35 × 10−3 | 9.36 × 10−3 | 8.56 × 10−6 | 7.51 × 10−3 | 7.52 × 10−3 |
Pesticides (to air) | – | 0.18 | 0.18 | – | 0.14 | 0.14 |
Pesticides (to water) | – | 0.02 | 0.02 | – | 0.01 | 0.01 |
Pesticides (to soil) | – | 0.77 | 0.77 | – | 0.60 | 0.60 |
Environmental Impact Category | Pollutant Emission | Equivalent Coefficient | Environment Impact Potential | ||
---|---|---|---|---|---|
Smallholder Farmers | Cooperatives | Smallholder Farmers | Cooperatives | ||
Global warming (kg) | CO2-eq | ||||
CO2 | 769.52 | 552.04 | 1 | 769.52 | 552.04 |
CO | 0.18 | 0.14 | 2 | 0.36 | 0.28 |
CH4 | 61.34 | 51.07 | 28 | 1717.52 | 1429.96 |
N2O | 1.07 | 0.86 | 265 | 283.55 | 227.9 |
Total | 2770.95 | 2210.18 | |||
Acidification (kg) | SO2-eq | ||||
SOx | 1.15 | 0.92 | 1 | 1.15 | 0.92 |
NH3 | 2.73 | 2.19 | 1.88 | 5.13 | 4.12 |
NOx | 1.35 | 1.07 | 0.7 | 0.95 | 0.75 |
Total | 7.23 | 5.79 | |||
Aquatic eutrophication (kg) | PO4-eq | ||||
Ptot | 0.24 | 0.19 | 3.06 | 0.73 | 0.58 |
NO3 | 6.33 | 5.11 | 0.1 | 0.63 | 0.51 |
NH4 | 0.52 | 0.42 | 0.33 | 0.17 | 0.14 |
NH3 | 2.37 | 1.90 | 0.33 | 0.78 | 0.63 |
COD | 3.29 | 2.61 | 0.022 | 0.07 | 0.06 |
Total | 2.39 | 1.92 |
Environmental Impact Category | Pollutant Emission | Equivalent Coefficient | Environment Impact Potential | ||
---|---|---|---|---|---|
Smallholder Farmers | Cooperatives | Smallholder Farmers | Cooperatives | ||
Human toxicity (kg) | 1,4-DCB-eq | ||||
Mancozeb | 5.3 × 10−2 | 4.14 × 10−2 | 4.8 | 0.25 | 0.20 |
Carbendazim | 4.46 × 10−2 | 3.49 × 10−2 | 19 | 0.85 | 0.66 |
Chlorothalonil | 3.2 × 10−2 | 2.5 × 10−2 | 8.4 | 0.27 | 0.21 |
Chlorpyrifos | 1.0 × 10−3 | 8.0 × 10−4 | 2.1 | 2.18 × 10−3 | 1.7 × 10−3 |
Omethoate | 2.07 × 10−2 | 1.62 × 10−2 | 44 | 0.91 | 0.71 |
Atrazine | 1.73 × 10−2 | 1.35 × 10−2 | 4.5 | 0.08 | 0.06 |
Total | 2.36 | 1.85 | |||
Aquatic eco-toxicity (kg) | 1,4-DCB-eq | ||||
Mancozeb | 5.3 × 10−3 | 4.1 × 10−3 | 28,000 | 148.40 | 114.80 |
Carbendazim | 4.5 × 10−3 | 3.5 × 10−3 | 38,000 | 171.00 | 133.00 |
Chlorothalonil | 3.2 × 10−3 | 2.5 × 10−3 | 370 | 1.18 | 0.93 |
Chlorpyrifos | 1.0 × 10−4 | 8.0 × 10−5 | 640,000 | 64.00 | 51.20 |
Omethoate | 2.1 × 10−3 | 1.6 × 10−3 | 170 | 0.36 | 0.27 |
Atrazine | 1.7 × 10−3 | 1.3 × 10−3 | 5000 | 8.50 | 6.50 |
As | 1.17 × 10−6 | 9.01 × 10−7 | 210 | 2.46 × 10−4 | 1.89 × 10−4 |
Cd | 7.49 × 10−7 | 6.78 × 10−6 | 1500 | 1.12 × 10−3 | 1.02 × 10−2 |
Cu | 4.52 × 10−5 | 7.68 × 10−5 | 1200 | 5.42 × 10−2 | 9.22 × 10−2 |
Pb | 1.55 × 10−5 | 4.85 × 10−5 | 9.6 | 1.49 × 10−4 | 4.66 × 10−4 |
Zn | 8.43 × 10−3 | 3.20 × 10−4 | 92 | 0.78 | 0.03 |
Total | 394.27 | 306.83 | |||
Soil eco-toxicity (kg) | 1,4-DCB-eq | ||||
Mancozeb | 0.23 | 0.18 | 16 | 3.65 | 2.85 |
Carbendazim | 0.19 | 0.15 | 49 | 9.41 | 7.35 |
Chlorothalonil | 0.14 | 0.11 | 0.68 | 0.09 | 0.07 |
Chlorpyrifos | 4.5 × 10−3 | 3.5 × 10−3 | 930 | 4.15 | 3.24 |
Omethoate | 8.92 × 10−2 | 6.96 × 10−2 | 0.8 | 0.07 | 0.06 |
Atrazine | 7.43 × 10−2 | 5.8 × 10−2 | 6.6 | 0.49 | 0.38 |
Cd | 7.0 × 10–5 | 5.1 × 10−5 | 170 | 1.19 × 10−2 | 8.67 × 10−3 |
Cu | 1.4 × 10–3 | 1.1 × 10−3 | 14 | 1.96 × 10−2 | 1.54 × 10−2 |
Pb | 6.0 × 10−4 | 4.5 × 10−4 | 33 | 0.02 | 0.01 |
Zn | 9.3 × 10−4 | 7.2 × 10−3 | 25 | 0.02 | 0.18 |
Total | 17.93 | 14.16 |
Environmental Impact Category | Unit | Reference Value | Normalization Value | Weight Value | Total Environmental Index | ||
---|---|---|---|---|---|---|---|
Smallholder Farmers | Cooperatives | Smallholder Farmers | Cooperatives | ||||
Energy depletion | MJ/t | 2,590,457 | 1.77 × 10−3 | 1.41 × 10−3 | 0.15 | 2.66 × 10−4 | 2.12 × 10−4 |
Land use | m2/t | 988.17 | 0.61 | 0.51 | 0.13 | 0.08 | 0.07 |
Global warming | kg CO2-eq/t | 6869 | 0.40 | 0.32 | 0.12 | 0.05 | 0.04 |
Acidification | kg SO2-eq/t | 52.26 | 0.14 | 0.11 | 0.14 | 1.94 × 10−2 | 1.55 × 10−2 |
Aquatic eutrophication | kg PO4-eq/t | 1.88 | 1.27 | 1.02 | 0.12 | 0.15 | 0.12 |
Human toxicity | kg 1,4-DCB-eq/t | 197.21 | 1.2 × 10−2 | 9.0 × 10 − 3 | 0.14 | 1.68 × 10−3 | 1.31 × 10−3 |
Aquatic eco-toxicity | kg 1,4-DCB-eq/t | 4.83 | 81.63 | 63.53 | 0.11 | 8.98 | 6.99 |
Soil eco-toxicity | kg 1,4-DCB-eq/t | 6.11 | 2.93 | 2.32 | 0.09 | 0.26 | 0.21 |
Total | 9.55 | 7.44 |
Item | Costs per Unit | Smallholder Farmers (CNY/t) | Cooperative (CNY/t) |
---|---|---|---|
Global warming | 0.46 CNY/kg CO2−eq | 1274.64 | 1016.68 |
Acidification | 38.50 CNY/kg SO2−eq | 278.36 | 222.92 |
Aquatic eutrophication | 4.65 CNY/kg PO4−eq | 11.11 | 8.93 |
Human toxicity | 0.77 CNY/kg 1,4−DCB−eq | 1.82 | 1.42 |
Aquatic eco-toxicity | 0.08 CNY/kg 1,4−DCB−eq | 31.54 | 24.55 |
Soil eco-toxicity | 0.08 CNY/kg 1,4−DCB−eq | 1.43 | 1.13 |
Total environmental cost | 1598.90 | 1275.63 | |
Fertilizer | |||
N | 5.35 CNY/kg | 137.33 | 110.00 |
P2O5 | 6.25 CNY/kg | 142.56 | 109.81 |
K2O | 5.18 CNY/kg | 101.94 | 74.13 |
Organic fertilizer | 8.55 CNY/kg | 245.30 | 202.46 |
Pesticide | |||
Mancozeb | 85 CNY/kg | 45.05 | 35.18 |
Carbendazim | 90 CNY/kg | 40.18 | 31.38 |
Chlorothalonil | 115 CNY/kg | 36.77 | 28.71 |
Chlorpyrifos | 80 CNY/kg | 8.30 | 6.48 |
Omethoate | 69 CNY/kg | 14.31 | 11.17 |
Atrazine | 75 CNY/kg | 12.96 | 10.12 |
Diesel | 7.25 CNY/kg | 139.49 | 116.15 |
Electricity | 0.5 CNY/kWh | 94.08 | 71.50 |
Human labor (employed) | 9500 CNY/ha | 570.00 | 475.00 |
Total variable cost | 1588.26 | 1282.08 | |
Insurance charge | 540 CNY/ha | 32.4 | 27 |
Mechanical depreciation cost | 25 CNY/set | 75 | 75 |
Total fixed cost | 107.4 | 102 | |
Total economic cost | 1695.66 | 1384.08 | |
LCC | 3294.56 | 2659.71 | |
Economic income | 5.65 CNY/kg | 5650 | 5650 |
Net profit | 2355.44 | 2990.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Wang, Q.; Li, D.; Yu, J. Comparative Analysis of Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers for Apple Production in China. Agriculture 2022, 12, 1281. https://doi.org/10.3390/agriculture12081281
Cheng J, Wang Q, Li D, Yu J. Comparative Analysis of Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers for Apple Production in China. Agriculture. 2022; 12(8):1281. https://doi.org/10.3390/agriculture12081281
Chicago/Turabian StyleCheng, Juanjuan, Qian Wang, Dongjian Li, and Jin Yu. 2022. "Comparative Analysis of Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers for Apple Production in China" Agriculture 12, no. 8: 1281. https://doi.org/10.3390/agriculture12081281
APA StyleCheng, J., Wang, Q., Li, D., & Yu, J. (2022). Comparative Analysis of Environmental and Economic Performance of Agricultural Cooperatives and Smallholder Farmers for Apple Production in China. Agriculture, 12(8), 1281. https://doi.org/10.3390/agriculture12081281