Metabolome Analysis Reveals Potential Mechanisms of Mannan Oligosaccharides to Improve Health, Growth Performance, and Fatty Acid Deposition in Hu Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Housing
2.2. Sample Collection and Analysis
2.2.1. Lamb Growth Performance
2.2.2. Digestion Trial
2.2.3. Slaughter Trial
2.2.4. Fatty Acid Composition Measurement
2.2.5. Metabolome Analysis of Serum and Urine Samples
2.3. Data Analysis
3. Results
3.1. Growth Performance
3.2. Fatty Acid Proportion in Longissimus Dorsi Muscle and Abdominal Adipose Tissue
3.3. Differential Metabolites in Serum and Urine
3.4. Functional Annotation of Differential Metabolites, Enrichment Analysis, and KEGG Metabolic Pathway Analysis
3.5. Correlation between Growth Performance and Fatty Acid Proportion in Muscle and Adipose Tissue and Serum and Urine Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Wu, S.; Han, Q. Modulation of the growth performance and innate immunity of loaches (Paramisgurnus dabryanus) upon dietary mannan oligosaccharides. 3 Biotech 2021, 11, 133. [Google Scholar] [CrossRef]
- Sanguri, S.; Gupta, D. Prebiotic Mannan Oligosaccharide Pretreatment Improves Mice Survival Against Lethal Effects of Gamma Radiation by Protecting GI Tract and Hematopoietic Systems. Front. Oncol. 2021, 11, 677781. [Google Scholar] [CrossRef] [PubMed]
- Grossi, S.; Dell’Anno, M.; Rossi, L.; Compiani, R.; Rossi, C.A.S. Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance. Antibiotics 2021, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhou, J.; Zeng, Y.; Liu, T. Effects of mannan oligosaccharides on growth performance, nutrient digestibility, ruminal fermentation and hematological parameters in sheep. PeerJ 2021, 9, e11631. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Ma, J.; Liu, T.; Wei, B.; Yang, H. Effects of Mannan Oligosaccharides on Gas Emission, Protein and Energy Utilization, and Fasting Metabolism in Sheep. Animals 2019, 9, 741. [Google Scholar] [CrossRef]
- Zheng, C.; Li, F.; Hao, Z.; Liu, T. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity, and antioxidant capacity of sheep. J. Anim. Sci. 2018, 96, 284–292. [Google Scholar] [CrossRef]
- Lucey, P.M.; Lean, I.J.; Aly, S.S.; Golder, H.M.; Block, E.; Thompson, J.S.; Rossow, H.A. Effects of mannan-oligosaccharide and Bacillus subtilis supplementation to preweaning Holstein dairy heifers on body weight gain, diarrhea, and shedding of fecal pathogens. J. Dairy Sci. 2021, 104, 4290–4302. [Google Scholar] [CrossRef]
- Diaz, T.G.; Branco, A.F.; Jacovaci, F.A.; Jobim, C.; Bolson, D.C.; Daniel, J. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE 2018, 13, e0193313. [Google Scholar] [CrossRef]
- Chagas, J.C.C.; Ferreira, M.A.; Faciola, A.P.; Machado, F.S.; Campos, M.M.; Entjes, M.R.; Donzele, J.L.; Marcondes, M.I. Effects of methionine plus cysteine inclusion on performance and body composition of liquid-fed crossbred calves fed a commercial milk replacer and no starter feed. J. Dairy Sci. 2018, 101, 6055–6065. [Google Scholar] [CrossRef]
- Danso, A.S.; Morel, P.C.H.; Kenyon, P.R.; Blair, H.T. Effects of dietary protein and energy intake on growth, body composition and nutrient utilisation in lambs reared artificially with milk replacers and pellet feeds. Anim. Feed Sci. Technol. 2018, 237, 35–45. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Pewan, S.B.; Otto, J.R.; Kinobe, R.T.; Adegboye, O.A.; Malau-Aduli, A.E.O. MARGRA Lamb Eating Quality and Human Health-Promoting Omega-3 Long-Chain Polyunsaturated Fatty Acid Profiles of Tattykeel Australian White Sheep: Linebreeding and Gender Effects. Antioxidants 2020, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Chacher, M.F.A.; Kamran, Z.; Ahsan, U.; Ahmad, S.; Koutoulis, K.; Din, H.Q.U.; Cengiz, Ö. Use of mannan oligosaccharide in broiler diets: An overview of underlying mechanisms. World Poult. Sci. J. 2017, 73, 831–844. [Google Scholar] [CrossRef]
- Yang, Y.A.; Iji, P.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Zheng, C.; Li, F.D.; Li, F.; Zhou, J.W.; Duan, P.W.; Liu, H.H.; Fan, H.M.; Zhu, W.L.; Liu, T. Effects of Adding Mannan Oligosaccharides to Milk Replacer on the Development of Gastrointestinal Tract of 7–28 Days Old Hu Lambs. Sci. Agric. Sin. 2020, 53, 398–408. [Google Scholar] [CrossRef]
- Adhikari, P.A.; Kim, W.K. Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity—A Review. Ann. Anim. Sci. 2017, 17, 949–966. [Google Scholar] [CrossRef]
- Baurhoo, B.; Letellier, A.; Zhao, X.; Ruiz-Feria, C.A. Cecal Populations of Lactobacilli and Bifidobacteria and Escherichia coli Populations After In Vivo Escherichia coli Challenge in Birds Fed Diets with Purified Lignin or Mannanoligosaccharides. Poult. Sci. 2007, 86, 2509–2516. [Google Scholar] [CrossRef]
- Sharma, A.N.; Kumar, S.; Tyagi, A.K. Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. J. Anim. Physiol. Anim. Nutr. 2018, 102, 679–689. [Google Scholar] [CrossRef]
- Uzmay, C.; Kiliç, A.; Kaya, I.; Özkul, H.; Önenç, S.S.; Polat, M. Effect of mannan oligosaccharide addition to whole milk on growth and health of Holstein calves. Arch. Anim. Breed. 2011, 54, 127–136. [Google Scholar] [CrossRef]
- Bovera, F.; Lestingi, A.; Iannaccone, F.; Tateo, A.; Nizza, A. Use of dietary mannanoligosaccharides during rabbit fattening period: Effects on growth performance, feed nutrient digestibility, carcass traits, and meat quality. J. Anim. Sci. 2012, 90, 3858–3866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.Y.; Jung, J.H.; Kim, I.H. Effect of mannan oligosaccharides and fructan on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. J. Anim. Sci. 2012, 90, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Aragona, K.M.; Suarez-Mena, F.X.; Dennis, T.S.; Quigley, J.D.; Hu, W.; Hill, T.M.; Schlotterbeck, R.L. Effect of starter form, starch concentration, and amount of forage fed on Holstein calf growth from 2 to 4 months of age. J. Dairy Sci. 2020, 103, 2324–2332. [Google Scholar] [CrossRef]
- Bittar, C.M.M.; Gallo, M.P.; Silva, J.T.; de Paula, M.R.; Poczynek, M.; Mourão, G.B. Gradual weaning does not improve performance for calves with low starter intake at the beginning of the weaning process. J. Dairy Sci. 2020, 103, 4672–4680. [Google Scholar] [CrossRef]
- Gelsinger, S.L.; Coblentz, W.K.; Zanton, G.I.; Ogden, R.K.; Akins, M.S. Physiological effects of starter-induced ruminal acidosis in calves before, during, and after weaning. J. Dairy Sci. 2020, 103, 2762–2772. [Google Scholar] [CrossRef]
- Xie, H.-K.; Zhao, G.-H.; Wu, Z.-X.; Li, D.-Y.; Zhao, M.-T.; Li, A.; Liu, H.-L.; Zhou, D.-Y.; Zhu, B.-W. Differences in oxidative susceptibilities between glycerophosphocholine and glycerophosphoethanolamine in dried scallop (Argopecten irradians) adductor muscle during storage: An oxidation kinetic assessment. J. Sci. Food Agric. 2020, 101, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E.; Araújo, M.L.G.M.L.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat quality of lambs fed diets with peanut cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X.; Zhang, Z.; Deng, K.; An, S.; Gao, X.; Wang, Z.; Liu, Z.; Wang, F.; Liu, D.; et al. Spirulina supplementation improves lipid metabolism and autophagic activities in the liver and muscle of Hu lambs fed a high-energy diet. Arch. Anim. Nutr. 2020, 74, 476–495. [Google Scholar] [CrossRef]
- Pereira, T.L.; Fernandes, A.R.M.; Oliveira, E.R.; Cônsolo, N.R.B.; Marques, O.F.C.; Maciel, T.P.; Pordeus, N.M.; Barbosa, L.C.G.S.; Buarque, V.L.M.; Padilla, A.R.H.; et al. Serum metabolomic fingerprints of lambs fed chitosan and its association with performance and meat quality traits. Animal 2020, 14, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Realini, C.E.; Bianchi, G.; Bentancur, O.; Garibotto, G. Effect of supplementation with linseed or a blend of aromatic spices and time on feed on fatty acid composition, meat quality and consumer liking of meat from lambs fed dehydrated alfalfa or corn. Meat Sci. 2017, 127, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.; Zhang, P.; Elemba, E.; Zhong, Q.; Sun, Z. Carcass characteristics, meat quality, and functional compound deposition in sheep fed diets supplemented with Astragalus membranaceus by-product. Anim. Feed Sci. Technol. 2020, 259, 114346. [Google Scholar] [CrossRef]
- Demirel, G.; Ozpinar, H.; Nazli, B.; Keser, O. Fatty acids of lamb meat from two breeds fed different forage: Concentrate ratio. Meat Sci. 2006, 72, 229–235. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Kawamura, T.; Okubo, T.; Sato, K.; Fujita, S.; Goto, K.; Hamaoka, T.; Iemitsu, M. Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition 2012, 28, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Kondakova, T.; D’Heygère, F.; Feuilloley, M.J.; Orange, N.; Heipieper, H.J.; Poc, C.D. Glycerophospholipid synthesis and functions in Pseudomonas. Chem. Phys. Lipids 2015, 190, 27–42. [Google Scholar] [CrossRef]
Ingredients | Concentration | |
---|---|---|
Dry matter | 95.68 | |
Protein | 24.89 | |
Ether extract | 17.50 | |
Crude fiber | 2.16 | |
Crude ash | 5.81 | |
Calcium | 1.02 | |
Total phosphorus | 0.59 | |
Sodium chloride | 0.1–0.2 | |
Lysine | ≥2.2 | |
Methionine | ≥1 | |
Threonine | ≥1 | |
Vitamin E (IU/kg) | ≥80 | |
Fatty acid (percent of total fatty acid methyl esters quantified) | ||
UFA | 32.483 | |
SFA | 54.476 | |
MUFA | 15.399 | |
PUFA | 17.083 | |
SFA:UFA | 1.677 | |
PUFA:SFA | 0.314 | |
MUFA:PUFA | 0.901 | |
n−3 PUFA | 4.284 | |
n−6 PUFA | 12.799 | |
n−6:n−3 PUFA | 2.988 | |
Butyric | C4:0 | 0.666 |
Caproic | C6:0 | 0.552 |
Octanoic | C8:0 | 0.417 |
Capric | C10:0 | 0.741 |
Lauric | C12:0 | 0.336 |
Tridecanoic | C13:0 | 3.660 |
Myristic | C14:0 | 0.400 |
Myristoleic | C14:1n5 | 3.537 |
Pentadecanoic | C15:0 | 0.154 |
Pentadecenoic | C15:1n5 | 0.181 |
Palmitic | C16:0 | 20.176 |
Palmitoleic | C16:1n7 | 0.487 |
Heptadecanoic | C17:0 | 0.210 |
Heptadecenoic | C17:1n7 | 0.484 |
Stearic | C18:0 | 24.571 |
Elaidic | C18:1n9t | 0.352 |
Oleic | C18:1n9c | 1.264 |
Linolelaidic | C18:2n6t | 0.788 |
Linoleic | C18:2n6c | 0.232 |
Arachidic | C20:0 | 1.479 |
γ-Linolenic | C18:3n6 | 0.358 |
α-Linolenic | C18:3n3 | 4.116 |
Heneicosanoic | C21:0 | 0.125 |
Behenic | C22:0 | 0.989 |
Eicosatrienoic | C20:3n6 | 0.127 |
Erucic | C22:1n9 | 8.828 |
Eicosatrienoic | C20:3n3 | 0.168 |
Arachidonic | C20:4n6 | 1.126 |
Docosadienoic | C22:2n6 | 10.168 |
Nervonic | C24:1n9 | 0.267 |
Item | CON | MOS | SEM | p Value | ||
---|---|---|---|---|---|---|
Treatment | Time | Treatment × Time | ||||
Body weight (g) | 4412.64 | 5063.99 | 188.09 | 0.087 | 0.365 | 0.994 |
Average daily weight gain (g) | 40.97 | 49.92 | 7.02 | 0.440 | <0.001 | 0.975 |
Average daily milk replacer intake (g) | 73.15 | 96.48 | 6.37 | 0.067 | 0.160 | 0.790 |
Dry matter digestibility (%) | 83.47 | 83.29 | 0.18 | 0.621 | 0.007 | 0.715 |
Organic matter digestibility (%) | 70.51 b | 71.61 a | 0.65 | 0.001 | <0.001 | <0.001 |
Crude protein digestibility (%) | 80.88 b | 81.69 a | 0.50 | 0.023 | <0.001 | 0.261 |
Ether extract digestibility (%) | 71.84 b | 74.41 a | 0.70 | <0.001 | <0.001 | <0.001 |
Calcium digestibility (%) | 70.00 b | 76.98 a | 0.90 | <0.001 | <0.001 | <0.001 |
Phosphorus digestibility (%) | 64.52 | 63.90 | 0.27 | 0.065 | <0.001 | 0.001 |
Class | Metabolites | p-Value | FC |
---|---|---|---|
Serum | |||
Polyols | Phenyllactic acid | 0.009 | 0.151 |
Phenols | 33–Hydroxyisovaleric acid | 0.036 | 0.590 |
Indolyl carboxylic acids | Indolelactic acid | 0.032 | 0.336 |
Imidazoles | Allantoin | 0.036 | 0.708 |
Glycerophosphoethanolamines | sn–1 LysoPE(16:0) | 0.007 | 1.642 |
sn–1 LysoPE(18:2) | 0.025 | 1.907 | |
sn–1 LysoPE(20:4) | 0.006 | 1.676 | |
sn–2 LysoPE(16:0) | 0.014 | 1.678 | |
sn–2 LysoPE(18:1) | 0.014 | 1.553 | |
sn–2 LysoPE(18:2) | 0.030 | 1.881 | |
Glycerophosphocholines | sn–1 LysoPC(16:0) | 0.021 | 1.505 |
sn–1 LysoPC(16:1) | 0.025 | 1.479 | |
sn–1 LysoPC(18:2) | 0.006 | 2.116 | |
sn–1 LysoPC(20:2) | 0.001 | 2.485 | |
sn–1 LysoPC(20:3) | 0.002 | 2.521 | |
sn–1 LysoPC (20:4) | 0.006 | 2.366 | |
sn–1 LysoPC(22:6) | 0.006 | 2.552 | |
sn–2 LysoPC(16:0) | 0.025 | 1.569 | |
sn–2 LysoPC (22:4) | 0.007 | 2.226 | |
sn–2 LysoPC (22:5) | 0.004 | 2.524 | |
Fatty acids | 2–Hydroxy–2–methylbutyric acid | 0.036 | 0.590 |
Carbohydrates | Glyceric acid | 0.021 | 1.284 |
Benzoic acids | 2–Hydroxycaproic acid | 0.007 | 0.391 |
Amino acids | 4–Hydroxyproline | 0.043 | 1.326 |
Betaine | 0.032 | 1.155 | |
N–Acetylglutamic acid | 0.003 | 0.609 | |
N–Acetyl–L–alanine | 0.043 | 1.330 | |
Urea | 0.017 | 0.720 | |
Acyl carnitines | Butyrylcarnitine | 0.043 | 0.511 |
O–Adipoylcarnitine | 0.025 | 0.144 | |
Tiglylcarnitine | 0.025 | 0.520 | |
Urine | |||
Amino acids | L–Isoleucine | 0.036 | 0.357 |
Carboxylic acids | Monoethyl malonic acid | 0.020 | 0.336 |
Purines | Xanthine | 0.016 | 1.612 |
Pathway | −log(p) | Impact |
---|---|---|
Serum | ||
Glycerolipid metabolism | 1.85630 | 0.10471 |
Glyoxylate and dicarboxylate metabolism | 1.23730 | 0.00000 |
Arginine and proline metabolism | 1.11890 | 0.04102 |
Glycine, serine and threonine metabolism | 1.00840 | 0.00000 |
Glycerophospholipid metabolism | 0.68863 | 0.04680 |
Purine metabolism | 0.26797 | 0.00000 |
Urine | ||
Valine, leucine and isoleucine degradation | 2.64820 | 0.00000 |
Valine, leucine and isoleucine biosynthesis | 2.64820 | 0.33333 |
Purine metabolism | 1.02960 | 0.02143 |
Aminoacyl–tRNA biosynthesis | 0.70622 | 0.00000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Li, F.; Xu, J.; Wang, J.; Shen, Z.; Zhang, F.; Wang, J.; Zheng, C. Metabolome Analysis Reveals Potential Mechanisms of Mannan Oligosaccharides to Improve Health, Growth Performance, and Fatty Acid Deposition in Hu Lambs. Agriculture 2022, 12, 1327. https://doi.org/10.3390/agriculture12091327
Liu T, Li F, Xu J, Wang J, Shen Z, Zhang F, Wang J, Zheng C. Metabolome Analysis Reveals Potential Mechanisms of Mannan Oligosaccharides to Improve Health, Growth Performance, and Fatty Acid Deposition in Hu Lambs. Agriculture. 2022; 12(9):1327. https://doi.org/10.3390/agriculture12091327
Chicago/Turabian StyleLiu, Ting, Fadi Li, Jianfeng Xu, Jing Wang, Zhenfeng Shen, Fan Zhang, Jiaqi Wang, and Chen Zheng. 2022. "Metabolome Analysis Reveals Potential Mechanisms of Mannan Oligosaccharides to Improve Health, Growth Performance, and Fatty Acid Deposition in Hu Lambs" Agriculture 12, no. 9: 1327. https://doi.org/10.3390/agriculture12091327
APA StyleLiu, T., Li, F., Xu, J., Wang, J., Shen, Z., Zhang, F., Wang, J., & Zheng, C. (2022). Metabolome Analysis Reveals Potential Mechanisms of Mannan Oligosaccharides to Improve Health, Growth Performance, and Fatty Acid Deposition in Hu Lambs. Agriculture, 12(9), 1327. https://doi.org/10.3390/agriculture12091327