Exogenous Fibrolytic Enzymes and Length of Storage Affect the Nutritive Value and Fermentation Profile of Maize Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling
2.2. Chemical Analysis
2.3. In Situ Nutrient Digestibility
2.4. Statistical Analyses
3. Results
3.1. Nutritive Value
3.2. Fermentation Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardes, T.F.; do Rêgo, A.C. Study on the practices of silage production and utilization on Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, R.D.; Ralph, J.; Grabber, J.H. Cell Wall Structural Foundations: Molecular Basis for Improving Forage Digestibilities. Crop Sci. 1999, 39, 27–37. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Colombatto, D.; Morgavi, D.P.; Yang, W.Z. Use of Exogenous Fibrolytic Enzymes to Improve Feed Utilization by Ruminants. J. Anim. Sci. 2003, 81, E37–E47. [Google Scholar] [CrossRef]
- Meale, S.J.; Beauchemin, K.A.; Hristov, A.N.; Chaves, A.V.; McAllister, T.A. BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve ruminant production. J. Anim. Sci. 2014, 92, 427–442. [Google Scholar] [CrossRef]
- Evers, T.; Millar, S. Cereal Grain Structure and Development: Some Implications for Quality. J. Cereal Sci. 2002, 36, 261–284. [Google Scholar] [CrossRef]
- Phakachoed, N.; Suksombat, W.; Colombatto, D.; Beauchemin, K.A. Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage. Livest. Sci. 2013, 157, 100–112. [Google Scholar] [CrossRef]
- Romero, J.J.; Zarate, M.A.; Adesogan, A.T. Effect of the dose of exogenous fibrolytic enzyme preparations on preingestive fiber hydrolysis, ruminal fermentation, and in vitro digestibility of bermudagrass haylage. J. Dairy Sci. 2015, 98, 406–417. [Google Scholar] [CrossRef]
- Higginbotham, G.E.; Mueller, S.C.; Collar, C.A.; Shultz, T.A.; Brazle, F.K.; Bush, L.J. Effects of an Enzyme Addition on Corn Silage Fermentation. Prof. Anim. Sci. 1994, 10, 163–168. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Ma, Z.X.; Romero, J.J.; Arriola, K.G. RUMINANT NUTRITION SYMPOSIUM: Improving cell wall digestion and animal performance with fibrolytic enzymes. J. Anim. Sci. 2014, 92, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Eun, J.S.; Beauchemin, K.A. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim. Feed Sci. Technol. 2007, 132, 298–315. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A.; Schulze, H. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci. 2007, 90, 1440–1451. [Google Scholar] [CrossRef]
- Nadeau, E.M.G.; Buxton, D.R.; Russell, J.R.; Allison, M.J.; Young, J.W. Enzyme, bacterial inoculant, and formic acid effects on silage composition of orchardgrass and alfalfa. J. Dairy Sci. 2000, 83, 1487–1502. [Google Scholar] [CrossRef]
- Der Bedrosian, M.C.; Nestor, K.E., Jr.; Kung, L., Jr. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. J. Dairy Sci. 2012, 95, 5115–5126. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Chen, Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim. Feed Sci. Technol. 2013, 185, 196–200. [Google Scholar] [CrossRef]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemistry. Official Methods of Analyses, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemistry. Official Methods of Analyses, 18th ed.; Association of Official Analytical Chemists, Ed.: Washington, DC, USA, 2006. [Google Scholar]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds that Contain Non-Protein Nitrogen; University Florida: Gainesville, FL, USA, 2000; pp. A25–A32. [Google Scholar]
- Hall, M.B. Determination of Starch, Including Maltooligosaccharides, in Animal Feeds: Comparison of Methods and a Method Recommended for AOAC Collaborative Study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Pryce, J.D. A modification of the Barker-Summerson method for the determination of lactic acid. Analyst 1969, 94, 1151–1152. [Google Scholar] [CrossRef]
- Weißbach, F.; Strubelt, C. Correcting the dry matter content of maize silages as a substrate for biogas production. Landtechnik 2008, 63, 82–83. [Google Scholar]
- Huntingdon, J.A.; Givens, D.I. The in situ technique for studying the rumen degradation of feeds: A review of the procedure. Nutr. Abstr. Rev. Ser. B Livest. Feeds Feed. 1995, 65, 63–93. [Google Scholar]
- Spoelstra, S.F.; Van Wikselaar, P.G.; Harder, B. The effects of ensiling whole crop maize with a multi-enzyme preparation on the chemical composition of the resulting silages. J. Sci. Food Agric. 1992, 60, 223–228. [Google Scholar] [CrossRef]
- Sheperd, A.C.; Kung, L. Effects of an Enzyme Additive on Composition of Corn Silage Ensiled at Various Stages of Maturity. J. Dairy Sci. 1996, 79, 1767–1773. [Google Scholar] [CrossRef]
- Li Ying, H.; Borjigin, N.; Yu, Z. Effect of inoculants and fibrolytic enzymes on the fermentation characteristics, in vitro digestibility and aflatoxins accumulation of whole-crop corn silage. Grassl. Sci. 2017, 63, 69–78. [Google Scholar] [CrossRef]
- Colombatto, D.; Mould, F.L.; Bhat, M.K.; Phipps, R.H.; Owen, E. In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage I. Effects of ensiling temperature, enzyme source and addition level. Anim. Feed Sci. Technol. 2004, 111, 111–128. [Google Scholar] [CrossRef]
- Lynch, J.P.; Baah, J.; Beauchemin, K.A. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant. J. Dairy Sci. 2015, 98, 1214–1224. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 1999, 87, 583–594. [Google Scholar] [CrossRef]
- Sanderson, M.A. Aerobic stability and in vitro fiber digestibility of microbially inoculated corn and sorghum silages. J. Anim. Sci. 1993, 71, 505–514. [Google Scholar] [CrossRef]
- Le, D.M.; Fojan, P.; Azem, E.; Pettersson, D.; Pedersen, N.R. Visualization of the anticaging effect of Ronozyme WX xylanase on wheat substrates. Cereal Chem. 2013, 90, 439–444. [Google Scholar] [CrossRef]
- Nsereko, V.L.; Morgavi, D.P.; Beauchemin, K.A.; Rode, L.M. Inhibition of ruminant feed enzyme polysaccharidase activities by extracts from silages. Can. J. Anim. Sci. 2000, 80, 523–526. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Beauchemin, K.A.; Nsereko, V.L.; Rode, L.M.; McAllister, T.A.; Wang, Y. Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. J. Sci. Food Agric. 2004, 84, 1083–1090. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Winchester, UK, 1991; ISBN 0948617225. [Google Scholar]
- Oude Elferink, S.J.W.H.; Janneke Krooneman, H.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef]
- Krooneman, J.; Faber, F.; Alderkamp, A.C.; Elferink, S.O.; Driehuis, F.; Cleenwerck, I.; Swings, J.; Gottschal, J.C.; Vancanneyt, M. Lactobacillus diolivorans sp. nov., a 1, 2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Fred, E.B.; Peterson, W.H.; Davenport, A. Acid Fermentation of Xylose. J. Biol. Chem. 1919, 39, 347–384. [Google Scholar] [CrossRef]
- Dehghani, M.R.; Weisbjerg, M.R.; Hvelplund, T.; Kristensen, N.B. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest. Sci. 2012, 150, 51–58. [Google Scholar] [CrossRef]
- Del Valle, T.A.; Antonio, G.; Zenatti, T.F.; Campana, M.; Zilio, E.M.C.; Ghizzi, L.G.; Gandra, J.R.; Osório, J.A.C.; De Morais, J.P.G. Effects of xylanase on the fermentation profile and chemical composition of sugarcane silage. J. Agric. Sci. 2018, 156, 1123–1129. [Google Scholar] [CrossRef]
- Wood, W.A. Fermentation of carbohydrates and related compounds. In The Bacteria: A Treatise on Structure and Function; Academic Press: Cambridge, MA, USA, 1961; pp. 59–100. [Google Scholar]
- Chamberlain, D.G. Effect of added glucose and xylose on the fermentation of perennial ryegrass silage inoculated with Lactobacillus plantarum. J. Sci. Food Agric. 1989, 46, 129–138. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L. The Effects of Various Antifungal Additives on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef]
- Tabacco, E.; Piano, S.; Revello-Chion, A.; Borreani, G. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 2011, 94, 5589–5598. [Google Scholar] [CrossRef]
- Joe Shaw, A.; Jenney, F.E.; Adams, M.W.W.; Lynd, L.R. End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb. Technol. 2008, 42, 453–458. [Google Scholar] [CrossRef]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef]
- Weiss, K.; Auerbach, H. Occurrence of volatile organic compounds and ethanol in different types of silages. In Proceedings of the XVI International Silage Conference, Hämeenlinna, Finland, 2–4 July 2012; Kuoppala, K., Rinne, M., Vanhatalo, A., Eds.; MTT Agrifood Research Finland: Jokioinen, Finland, 2012; pp. 128–129. [Google Scholar]
- Da Silva, J.; Winckler, J.P.P.; de Pasetti, M.H.O.; Salvo, P.A.R.; Kristensen, N.B.; Daniel, J.L.P.; Nussio, L.G. Effects of Lactobacillus buchneri inoculation or 1-propanol supplementation to corn silage on the performance of lactating Holstein cows. Rev. Bras. Zootec. 2017, 46, 591–598. [Google Scholar] [CrossRef]
- Parra, C.S.; Bolson, D.C.; Jacovaci, F.A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Influence of soybean-crop proportion on the conservation of maize-soybean bi-crop silage. Anim. Feed Sci. Technol. 2019, 257, 114295. [Google Scholar] [CrossRef]
- Bueno, J.L.; Bolson, D.C.; Jacovaci, F.A.; Mendonça Gomes, A.L.; Ribeiro, M.G.; Iank Bueno, A.V.; Jobim, C.C.; Pratti Daniel, J.L. Storage length interacts with maturity to affect nutrient availability in unprocessed flint corn silage. Rev. Bras. Zootec. 2020, 49, 1–14. [Google Scholar] [CrossRef]
- Bragatto, J.M.; Parra, C.S.; Filho, F.A.P.; Silva, S.M.S.; Osorio, J.A.C.; Buttow, S.C.; Santos, G.T.; Jobim, C.C.; Nussio, L.G.; Daniel, J.L.P. Effect of dietary isopropanol on the performance and milk quality of dairy cows. Anim. Feed Sci. Technol. 2022, 286, 115254. [Google Scholar] [CrossRef]
- Hafner, S.D.; Franco, R.B.; Kung, L.; Rotz, C.A.; Mitloehner, F. Potassium sorbate reduces production of ethanol and 2 esters in corn silage1. J. Dairy Sci. 2014, 97, 7870–7878. [Google Scholar] [CrossRef] [PubMed]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.H. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass Forage Sci. 2018, 73, 53–66. [Google Scholar] [CrossRef]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.H. Effect of compaction, delayed sealing and aerobic exposure on forage choice and short-term intake of maize silage by goats. Grass Forage Sci. 2018, 73, 392–405. [Google Scholar] [CrossRef]
- Weiß, K.; Kroschewski, B.; Auerbach, H. Formation of volatile organic compounds during the fermentation of maize as affected by sealing time and silage additive use. Arch. Anim. Nutr. 2020, 74, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Weiß, K.; Kroschewski, B.; Auerbach, H.U. The Influence of Delayed Sealing and Repeated Air Ingress during the Storage of Maize Silage on Fermentation Patterns, Yeast Development and Aerobic Stability. Fermentation 2022, 8, 48. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Siemerink, M.A.J.; Kuit, W.; Contreras, A.M.L.; Eggink, G.; van der Oost, J.; Kengen, S.W.M. D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2011, 77, 2582–2588. [Google Scholar] [CrossRef] [Green Version]
DM | DMD 1 | NDF | NDFD 1 | Starch | StarchD | CP | NH3-N | |
---|---|---|---|---|---|---|---|---|
% | % DM | % DM | % NDF | % DM | % Starch | % DM | %Total N | |
30 d | ||||||||
Control | 32.0 | 70.3 | 51.8 | 55.1 | 31.8 | 76.2 ab | 9.4 | 8.0 |
E100 | 31.3 | 71.4 | 49.0 | 54.4 | 33.0 | 72.0 ab | 9.6 | 2.6 |
E150 | 31.0 | 72.2 | 49.0 | 55.9 | 31.2 | 79.1 ab | 9.7 | 3.2 |
E200 | 31.0 | 71.5 | 48.5 | 55.5 | 33.4 | 79.3 ab | 9.5 | 5.9 |
60 d | ||||||||
Control | 31.7 | 71.6 | 56.8 | 60.9 | 31.2 | 70.6 b | 9.8 | 7.7 |
E100 | 31.5 | 73.3 | 52.0 | 60.8 | 35.1 | 82.3 a | 9.8 | 4.5 |
E150 | 30.0 | 73.5 | 54.5 | 62.3 | 31.1 | 80.3 ab | 10.3 | 3.0 |
E200 | 30.3 | 72.2 | 50.8 | 56.4 | 32.5 | 77.3 ab | 10.1 | 5.0 |
90 d | ||||||||
Control | 30.5 | 70.3 | 51.0 | 57.2 | 30.4 | 71.2 b | 10.0 | 6.3 |
E100 | 30.7 | 69.9 | 51.8 | 55.9 | 31.8 | 76.5 ab | 10.3 | 10.9 |
E150 | 29.3 | 72.4 | 51.5 | 60.8 | 32.7 | 78.6 ab | 10.6 | 10.6 |
E200 | 29.8 | 73.1 | 52.5 | 60.2 | 32.9 | 79.6 ab | 10.1 | 14.9 |
SEM 2 | 0.22 | 1.57 | 0.007 | 1.76 | 1.43 | 3.06 | 0.23 | 0.52 |
EFE doses | ||||||||
Control | 31.4 a | 70.8 | 53.2 | 57.7 | 31.2 | 72.6 | 9.8 | 7.0 |
E100 | 31.1 a | 71.5 | 50.9 | 57.0 | 33.3 | 76.9 | 9.9 | 6.3 |
E150 | 30.1 b | 72.7 | 51.7 | 59.6 | 31.7 | 79.4 | 10.2 | 5.5 |
E200 | 30.3 b | 72.3 | 50.6 | 57.4 | 32.9 | 78.7 | 9.9 | 8.8 |
SEM ² | 0.15 | 1.36 | 0.006 | 1.49 | 0.96 | 2.79 | 0.13 | 0.36 |
Length of storage | ||||||||
30 d | 31.3 a | 71.4 | 49.6 b | 55.2 b | 32.4 | 76.7 | 9.6 b | 5.2 b |
60 d | 30.9 b | 72.6 | 53.5 a | 60.1 a | 32.5 | 77.6 | 10.0 a | 5.0 b |
90 d | 30.1 c | 71.4 | 51.7 ab | 58.5 ab | 32.0 | 76.5 | 10.3 a | 10.3 a |
SEM 2 | 0.13 | 1.28 | 0.005 | 1.47 | 0.83 | 2.66 | 0.12 | 0.26 |
p-value | ||||||||
Dose | <0.01 | 0.22 | 0.12 | 0.06 | 0.24 | 0.09 | 0.17 | 0.68 |
Storage length | <0.01 | 0.10 | 0.01 | <0.01 | 0.86 | 0.64 | 0.01 | 0.01 |
D × L 3 | 0.19 | 0.47 | 0.22 | 0.08 | 0.65 | 0.01 | 0.91 | 0.18 |
DM | DM | pH | Lactic | Acetic | Propionic | Butyric | ||
---|---|---|---|---|---|---|---|---|
Corr 1 | Losses | WSC | Acid | Acid | Acid | Acid | ||
% | % | % DM | % DM | % DM | mg/kg DM | mg/kg DM | ||
30 d | ||||||||
Control | 32.7 | 0.92 | 4.26 a | 4.01 abc | 2.87 abcd | 0.68 f | 80.8 d | 15.0 |
E100 | 31.9 | 4.01 | 4.32 a | 3.58 bc | 2.87 abcd | 1.13 e | 90.5 d | 15.3 |
E150 | 31.5 | 1.99 | 4.21 ab | 4.16 abc | 3.53 abc | 1.03 e | 85.8 d | 11.5 |
E200 | 31.6 | 2.34 | 4.19 ab | 3.94 bc | 4.25 a | 1.26 de | 101 d | 10.8 |
60 d | ||||||||
Control | 32.3 | 3.25 | 4.00 c | 3.33 c | 2.65 bcde | 1.22 de | 151 cd | 20.8 |
E100 | 32.2 | 4.09 | 4.00 c | 4.05 abc | 3.30 abc | 1.55 cd | 196 cd | 9.0 |
E150 | 31.0 | 5.38 | 4.00 c | 5.53 ª | 4.29 ª | 1.82 bc | 421 c | 15.8 |
E200 | 30.9 | 6.02 | 4.09 bc | 4.16 abc | 4.07 ab | 1.70 bc | 305 cd | 19.0 |
90 d | ||||||||
Control | 31.4 | 6.02 | 4.22 ab | 4.25 abc | 1.74 de | 1.63 bcd | 1107 a | 23.5 |
E100 | 31.5 | 6.75 | 4.17 ab | 4.76 ab | 1.13 e | 2.00 b | 1059 a | 15.8 |
E150 | 30.2 | 8.52 | 4.16 abc | 4.25 abc | 2.10 cde | 2.46 ª | 1071 a | 29.0 |
E200 | 30.8 | 6.90 | 4.19 ab | 4.54 abc | 1.56 de | 2.65 ª | 728 b | 15.0 |
SEM 2 | 0.27 | 1.062 | 0.036 | 0.294 | 0.303 | 0.083 | 51.35 | 3.34 |
EFE doses | ||||||||
Control | 32.1 a | 3.40 | 4.16 | 3.86 | 2.42 | 1.18 | 446 | 19.8 |
E100 | 31.9 a | 4.95 | 4.16 | 4.13 | 2.43 | 1.56 | 448 | 13.3 |
E150 | 30.9 b | 5.30 | 4.12 | 4.65 | 3.31 | 1.77 | 526 | 18.8 |
E200 | 31.1 b | 5.09 | 4.16 | 4.21 | 3.29 | 1.87 | 378 | 14.9 |
SEM 2 | 0.16 | 0.615 | 0.020 | 0.170 | 0.198 | 0.048 | 44.35 | 1.57 |
Length of storage | ||||||||
30 d | 31.9 a | 2.32 c | 4.25 | 3.92 | 3.38 | 1.03 | 89.6 | 13.1 b |
60 d | 31.6 a | 4.69 b | 4.02 | 4.27 | 3.58 | 1.57 | 268 | 16.1 ab |
90 d | 31.0 b | 7.05 a | 4.19 | 4.45 | 1.63 | 2.19 | 991 | 20.8 a |
SEM 2 | 0.14 | 0.533 | 0.018 | 0.147 | 0.171 | 0.042 | 38.41 | 1.35 |
p-value | ||||||||
Dose | <0.01 | 0.21 | 0.42 | 0.02 | 0.01 | <0.01 | 0.07 | 0.19 |
Storage length | <0.01 | <0.01 | <0.01 | 0.05 | <0.01 | <0.01 | <0.01 | 0.01 |
D × L 3 | 0.30 | 0.26 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.14 |
Ethanol | 1,2-Propanediol | 2,3-Butanediol | 1-Propanol | Ethyl Lactate | Ethyl Acetate | |
---|---|---|---|---|---|---|
% DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | |
30 d | ||||||
Control | 0.140 | 690 b | 131 d | 2.75 b | 18.8 | 17.7 |
E100 | 0.090 | 1152 ab | 189 d | 4.50 b | 15.3 | 9.67 |
E150 | 0.092 | 1194 ab | 166 d | 2.50 b | 15.5 | 14.0 |
E200 | 0.055 | 1873 a | 188 d | 4.25 b | 14.5 | 11.5 |
60 d | ||||||
Control | 0.065 | 1111 ab | 169 d | 27.8 b | 16.5 | 5.00 |
E100 | 0.042 | 1429 ab | 241 bcd | 30.0 b | 14.3 | 6.00 |
E150 | 0.045 | 1587 ab | 347 abc | 83.8 a | 14.8 | 6.75 |
E200 | 0.010 | 1474 ab | 229 cd | 19.5 b | 5.00 | 1.50 |
90 d | ||||||
Control | 0.042 | 1281 ab | 496 a | 100 a | 12.5 | 9.00 |
E100 | 0.010 | 1480 ab | 424 a | 30.5 b | 6.50 | 5.25 |
E150 | 0.005 | 796 b | 384 ab | 12.0 b | 3.50 | 3.75 |
E200 | 0.002 | 1010 ab | 333 abc | 13.3 b | 3.00 | 3.75 |
SEM 1 | 0.0104 | 199.2 | 28.9 | 7.796 | 1.885 | 1.455 |
EFE doses | ||||||
Control | 0.082 a | 1027 | 265 | 43.5 | 15.9 a | 10.6 a |
E100 | 0.047 b | 1354 | 285 | 21.7 | 12.0 ab | 6.97 ab |
E150 | 0.047 b | 1192 | 299 | 32.8 | 11.3 bc | 8.17 ab |
E200 | 0.022 c | 1452 | 250 | 12.3 | 7.50 c | 5.58 b |
SEM 1 | 0.0061 | 115.0 | 19.9 | 2.526 | 1.149 | 0.931 |
Length of storage | ||||||
30 d | 0.094 a | 1227 | 168 | 3.50 | 16.0 a | 13.2 a |
60 d | 0.041 b | 1400 | 247 | 40.3 | 12.6 b | 4.81 b |
90 d | 0.015 c | 1142 | 409 | 39.0 | 6.38 c | 5.44 b |
SEM 1 | 0.0053 | 99.6 | 17.1 | 2.194 | 0.995 | 0.803 |
p-value | ||||||
Dose | <0.01 | 0.10 | 0.18 | <0.01 | <0.01 | 0.01 |
Storage length | <0.01 | 0.16 | <0.01 | <0.01 | <0.01 | <0.01 |
D × L 2 | 0.44 | 0.01 | 0.01 | <0.01 | 0.12 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo, P.; Gritti, V.; Silva, É.d.; Nadeau, E.; Daniel, J.; Spindola, M.; Nussio, L. Exogenous Fibrolytic Enzymes and Length of Storage Affect the Nutritive Value and Fermentation Profile of Maize Silage. Agriculture 2022, 12, 1358. https://doi.org/10.3390/agriculture12091358
Salvo P, Gritti V, Silva Éd, Nadeau E, Daniel J, Spindola M, Nussio L. Exogenous Fibrolytic Enzymes and Length of Storage Affect the Nutritive Value and Fermentation Profile of Maize Silage. Agriculture. 2022; 12(9):1358. https://doi.org/10.3390/agriculture12091358
Chicago/Turabian StyleSalvo, Pedro, Viviane Gritti, Érica da Silva, Elisabet Nadeau, João Daniel, Maria Spindola, and Luiz Nussio. 2022. "Exogenous Fibrolytic Enzymes and Length of Storage Affect the Nutritive Value and Fermentation Profile of Maize Silage" Agriculture 12, no. 9: 1358. https://doi.org/10.3390/agriculture12091358
APA StyleSalvo, P., Gritti, V., Silva, É. d., Nadeau, E., Daniel, J., Spindola, M., & Nussio, L. (2022). Exogenous Fibrolytic Enzymes and Length of Storage Affect the Nutritive Value and Fermentation Profile of Maize Silage. Agriculture, 12(9), 1358. https://doi.org/10.3390/agriculture12091358