Biocontrol of Three Severe Diseases in Soybean
Abstract
:1. Introduction
2. General Characteristics of Soybean Diseases
2.1. Soybean Sclerotinia Stem Rot
2.2. Phytophthora Root Rot
2.3. Soybean Cyst Nematode
3. Biocontrol of Soybean Sclerotinia Stem Rot
3.1. Biocontrol Fungi against Soybean Sclerotinia Stem Rot
3.2. Biocontrol Bacteria against Soybean Sclerotinia Stem Rot
4. Biocontrol of Soybean Phytophthora Root Rot
4.1. Biocontrol Fungi against Soybean Phytophthora Root Rot
4.2. Biocontrol Bacteria against Soybean Phytophthora Root Rot
5. Biocontrol of Soybean Cyst Nematode
5.1. Biocontrol Fungi against Soybean Cyst Nematode
5.2. Biocontrol Bacteria against Soybean Cyst Nematode Disease
6. Biocontrol Mechanisms of Controlling Soybean Diseases
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCaghey, M.; Willbur, J.; Smith, D.L.; Kabbage, M. The complexity of the Sclerotinia sclerotiorum pathosystem in soybean: Virulence factors, resistance mechanisms, and their exploitation to control Sclerotinia stem rot. Trop. Plant Pathol. 2018, 44, 12–22. [Google Scholar] [CrossRef]
- Morais, E.M.; Silva, A.A.R.; Sousa, F.W.A.; Azevedo, I.M.B.; Silva, H.F.; Santos, A.M.G.; Beserra Júnior, J.E.A.; Carvalho, C.P.; Eberlin, M.N.; Porcari, A.M.; et al. Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS ONE. 2022, 17, e0265824. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.C.; Sautua, F.; Scandiani, M.; Carmona, M.; Asurmendi, S. Current recommendations and novel strategies for sustainable management of soybean sudden death syndrome. Pest Manag. Sci. 2021, 77, 4238–4248. [Google Scholar] [CrossRef]
- Willbur, J.; Mccaghey, M.; Kabbage, M.; Smith, D.L. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies. Trop. Plant Pathol. 2019, 44, 3–11. [Google Scholar] [CrossRef]
- Giachero, M.L.; Declerck, S.; Marquez, N. Phytophthora root rot: Importance of the disease, current and novel methods of control. Agronomy 2022, 12, 610. [Google Scholar] [CrossRef]
- O’Sullivan, C.A.A.; Belt, K.; Thatcher, L.F.F. Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Front. Plant Sci. 2021, 12, 707509. [Google Scholar] [CrossRef]
- Xiang, N.; Lawrence, K.S.; Donald, P.A. Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. J. Phytopathol. 2018, 166, 449–458. [Google Scholar] [CrossRef]
- Bejarano, A.; Puopolo, G. Bioformulation of microbial biocontrol agents for a sustainable agriculture. In How Research Can Stimulate the Development of Commercial Biological Control against Plant Diseases; De Cal, A., Ed.; Progress in Biological Control Series; Springer: Berlin, Germany, 2020; pp. 275–293. [Google Scholar]
- Cui, L.; Yang, C.; Wang, Y.; Ma, T.; Cai, F.; Wei, L.; Jin, M.; Osei, R.; Zhang, J.; Tang, M. Potential of an endophytic bacteria Bacillus amyloliquefaciens 3-5 as biocontrol agent against potato scab. Microb. Pathog. 2022, 163, 105382. [Google Scholar] [CrossRef] [PubMed]
- Niblack, T.L.; Lambert, K.N.; Tylka, G.L. A model plant pathogen from the kingdom animalia: Heterodera glycines, the soybean cyst nematode. Annu. Rev. Phytopathol. 2006, 4, 283–303. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, G.; Song, N.; Wang, J.; Cao, L.; Jiang, H.; Ding, T. Complete mitochondrial genome sequence of the phytopathogenic fungi Sclerotinia sclerotiorum JX-21. Mitochondrial DNA B Resour. 2016, 1, 656–657. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.D.; Thomma, B.P.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, D. Morphology, cytology and physiology of Sclerotinia species in culture. Phytopathology 1979, 69, 887–890. [Google Scholar] [CrossRef]
- Ding, L.N.; Li, T.; Guo, X.J.; Li, M.; Liu, X.Y.; Cao, J.; Tan, X.L. Sclerotinia stem rot resistance in rapeseed: Recent progress and future prospects. J. Agric. Food Chem. 2021, 69, 2965–2978. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.L.; Zhang, W.; Wei, Q.H.; Shi, L.M.; Guo, Y.; Zhang, K.C.; Ge, B.B. Sclerotinia stem rot of soybean: A review. Chin. AgrIC. Sci. E Bull. 2021, 37, 90–99. [Google Scholar]
- Dai, R.P.; Liu, H. Research advance on soybean Phytophthora root rot. Soybean Sci. Technol. 2011, 1, 20–22. [Google Scholar]
- Kato, M. Recent reseach on Phytophthora root and stem rot of soybean in Japan. Plant Protect. 2010, 64, 497–500. [Google Scholar]
- Zhang, S.Z.; Ding, G.W.; Li, W.B.; Yang, C.P.; Lin, S.F.; Xu, P.F.; Ning, H.L.; Zhang, D.Y.; Jiang, Z.F.; Wu, X.X. Research progress on Phytophthora sojae root rot. Chin. J. Oil Crop Sci. 2004, 26, 102–107. [Google Scholar]
- Sugimoto, T.; Kato, M.; Yoshida, S.; Matsumoto, I.; Kobayashi, T.; Kaga, A.; Hajika, M.; Yamamoto, R.; Watanabe, K.; Aino, M.; et al. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci. 2012, 61, 511–522. [Google Scholar] [CrossRef]
- Lilley, C.J.; Atkinson, H.J.; Urwin, P.E. Molecular aspects of cyst nematodes. Mol. Plant Pathol. 2005, 6, 577–588. [Google Scholar] [CrossRef]
- Yu, B.L.; Gao, L. Occurrence and management of soybean cyst nematode. Soybean Sci. Technol. 2012, 1, 29–33. [Google Scholar]
- Xu, Y.L.; Wang, L.F.; Zhan, L.L. The research advances on soybean cyst nematodes (SCN). Soybean Sci. Technol. 2010, 1, 21–24. [Google Scholar]
- Opperman, C.H.; Bird, D.M. The soybean cyst nematode, Heterodera glycines: A genetic model system for the study of plant-parasitic nematodes. Curr. Opin. Plant Biol. 1998, 1, 246–342. [Google Scholar] [CrossRef]
- Chen, L.J.; Wang, Y.Y.; Zhu, X.F.; Duan, Y.X. Riview of the biocontrol on soybean cyst nematode (Heterodera glycines). J. Shenyang Agric. Univ. 2011, 42, 393–398. [Google Scholar]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.T.; Kirk, W.; Hao, J.J. Field management of Sclerotinia stem rot of soybean using biological control agents. Biol. Control 2012, 60, 141–147. [Google Scholar] [CrossRef]
- Zeng, W.T.; Wang, D.C.; Kirk, W.; Hao, J.J. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol. Control 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Menendez, A.B.; Godeas, A. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia 1998, 142, 153–160. [Google Scholar] [CrossRef]
- Sumida, C.H.; Daniel, J.F.S.; Araujod, A.P.C.S.; Peitl, D.C.; Abreu, L.M.; Dekker, R.F.H.; Canteri, M.G. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Sci. Technol. 2018, 28, 142–156. [Google Scholar] [CrossRef]
- Haddad, P.E.; Leite, L.G.; Lucon, C.M.M.; Harakava, R. Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesqui. Agropecuária Bras. 2017, 52, 1140–1148. [Google Scholar] [CrossRef]
- Sun, Z.B.; Wang, Q.; Sun, M.H.; Li, S.D. The heat shock protein 70 gene is involved for colony morphology, sporulation and mycoparasitism of Clonostachys rosea. FEMS Microbiol. Lett. 2019, 366, 188. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.A.; Cabrera, G.; Gozzo, F.C.; Eberlin, M.N.; Godeas, A. Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: Mechanisms involved and potential as a biocontrol agent. J. Appl. Microbiol. 2011, 110, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.A.; Rothen, C.; Lo, T.E.; Cabrera, G.M.; Godeas, A.M. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: Selection and evaluation of Clonostachys rosea BAFC1646. Biocontrol Sci. Technol. 2015, 25, 1388–1409. [Google Scholar] [CrossRef]
- Zhang, S.M.; Wang, Y.X.; Wang, J.L.; Li, J. Biocontrol of soybean Sclerotinia sclerotiorum by Bacillus subtilis. Soybean Bull. 2006, 1, 18–19. [Google Scholar]
- Rodriguez, M.A.; Cabrera, G.; Godeas, A. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J. Appl. Microbiol. 2006, 100, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Peitl, D.C.; Sumida, C.H.; Gonçalves, R.M.; Pascholati, S.F.; Balbi-Peña, M.I. Antagonism of saprobe fungi from semiarid areas of the Northeast of Brazil against Sclerotinia sclerotiorum and biocontrol of soybean white mold. Semin. Ciências Agrárias 2020, 41, 2597–2612. [Google Scholar] [CrossRef]
- Safaei Asadabadi, R.; Hage-Ahmed, K.; Steinkellner, S. Biochar, compost and arbuscular mycorrhizal fungi: A tripartite approach to combat Sclerotinia sclerotiorum in soybean. J. Plant Dis. Prot. 2021, 128, 1433–1445. [Google Scholar] [CrossRef]
- Vitorino, L.C.; Silva, F.O.D.; Cruvinel, B.G.; Bessa, L.A.; Rosa, M.; Souchie, E.L.; Silva, F.G. Biocontrol potential of Sclerotinia sclerotiorum and physiological changes in soybean in response to Butia archeri palm rhizobacteria. Plants 2020, 39, 64. [Google Scholar] [CrossRef]
- Alvarez, F.; Castro, M.; Principe, A.; Borioli, G.; Fischer, S.; Mori, G.; Jofre, E. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 2012, 112, 159–174. [Google Scholar] [CrossRef]
- Simonetti, E.; Hernández, A.I.; Kerber, N.L.; Pucheu, N.L.; Carmona, M.A.; García, A.F. Protection of canola (Brassica napus) against fungal pathogens by strains of biocontrol rhizobacteria. Biocontrol Sci. Technol. 2012, 22, 111–115. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, A.G.; Morrison, M.J.; Meng, Y. Impact of time between field application of Bacillus subtilis strains SB01 and SB24 and inoculation with Sclerotinia sclerotiorum on the suppression of Sclerotinia stem rot in soybean. Eur. J. Plant Pathol. 2011, 131, 95–102. [Google Scholar] [CrossRef]
- Nian, J.; Yu, M.; Bradley, C.A.; Zhao, Y. Lysobacter enzymogenes strain C3 suppresses mycelium growth and spore germination of eight soybean fungal and oomycetes pathogens and decreases disease incidences. Biol. Control 2021, 152, 104424. [Google Scholar] [CrossRef]
- Liu, D.; Yan, R.; Fu, Y.; Wang, X.; Zhang, J.; Xiang, W. Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2. Front. Microbiol. 2019, 10, 2077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dou, G.; Ma, Y. Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J. Gen. Plant Pathol. 2016, 82, 165–173. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhou, T.; Xie, J.; Cheng, J.; Chen, T.; Jiang, D.; Fu, Y. Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microb. Genom. 2020, 6, e000345. [Google Scholar] [CrossRef]
- Sun, Z.B.; Wang, Q.; Zhang, J.; Jiang, W.Z.; Wang, Q.; Li, S.D.; Ma, G.Z.; Sun, M.H. The transcription factor-encoding gene crtf is involved in Clonostachys chloroleuca mycoparasitism on Sclerotinia sclerotiorum. Microbiol. Res. 2018, 210, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.B.; Wang, Q.; Sun, M.H.; Li, S.D. The mitogen-activated protein kinase gene crmapk is involved in Clonostachys chloroleuca mycoparasitism. Mol. Plant Microbe Interact. 2020, 33, 902–910. [Google Scholar] [CrossRef]
- Jing, L.; Navi, S.S.; Yang, X. Effects of colonisation by different strains of Coniothyrium minitanson the viability of sclerotia of Sclerotinia sclerotiorum. Biocontrol Sci. Technol. 2014, 25, 460–474. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Costa, E.S.; Thomasi, S.S.; Brandao, D.F.R.; Vieira, P.C.; Fernandes, J.B.; Forim, M.R.; Ferreira, A.G.; Pascholati, S.F.; Gusmao, L.F.P.; et al. Biological and chemical control of Sclerotinia sclerotiorum using Stachybotrys levispora and its secondary metabolite griseofulvin. J. Agric. Food Chem. 2018, 66, 7627–7632. [Google Scholar] [CrossRef]
- del Rio, L.E.; Martinson, C.A.; Yang, X.B. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Dis. 2002, 86, 999–1004. [Google Scholar] [CrossRef]
- Barros, D.C.M.; Fonseca, I.C.B.; Balbi-Peña, M.I.; Pascholati, S.F.; Peitl, D.C. Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica. 2015, 41, 251–255. [Google Scholar] [CrossRef]
- Massawe, V.C.; Hanif, A.; Farzand, A.; Mburu, D.K.; Ochola, S.O.; Wu, L.M.; Tahir, H.A.S.; Gu, Q.; Wu, H.J.; Gao, X.W. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 2018, 108, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Orozco, J.G.; Bueno, C.J.; Shapiro-Ilan, D.I.; Hazir, S.; Leite, L.G.; Harakava, R. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci. Rep. 2020, 10, 20649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Saini, S.; Wray, V.; Nimtz, M.; Prakash, A.; Johri, B.N. Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum. J. Basic Microbiol. 2012, 52, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.B.D.; Carpentieri-Pipolo, V.; Fira, D.; Balatti, P.A.; Lopez, S.M.Y.; Oro, T.H.; Pagliosa, E.S.; Degrassi, G. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J. Appl. Microbiol. 2018, 125, 1466–1481. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, J.N.; Huang, Z.Q.; Wang, X.; Ding, Z.Q.; Chang, Y.; Su, Z.X.; Zhou, X.G. Biological properties of Paenibacillus polymyxa XZ-2 and its antagonistic effect against 3 soybean pathogens. Southwest China J. Agric. Sci. 2018, 31, 1197–1202. [Google Scholar]
- Ayoubi, N.; Zafari, D.; Mirabolfathy, M. Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. J. Crop Prot. 2012, 1, 67–79. [Google Scholar]
- Liu, H.A.; Wu, H.S.; Li, J.; Ren, Q.Q.; Su, J.K.; Shang, X.X.; Li, Y.F.; Zhou, X.D.; Yan, S.; Liu, X.X. Effects of antagonistic microbes and organic fertilizer mixtures on controlling pathogen Phytophthra sojae of soybean. J. Yangzhou Univ. 2014, 35, 90–94. [Google Scholar]
- Li, Y.; Liu, Z.; Hou, H.; Lei, H.; Zhu, X.; Li, X.; He, X.; Tian, C. Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol. Plant. 2013, 35, 3465–3475. [Google Scholar] [CrossRef]
- Tai, L.M.; Gao, J.F.; Zuo, Y.H.; Jin, X.H.; Zhang, Y.L.; Li, H.Y. Induction of defense enzymes activities in soyben and control effect of Phytophthora Root Rot in flowerpot by Trichoderma longibrachiaum T115D. Chin. J. Biol. Control 2018, 34, 897–905. [Google Scholar]
- Yang, G.H.; Gao, Z.M.; Cao, S.; Jiang, T.; Wang, T. Screening and biocontrol effects of antagonistic against Phytophthora sojae. J. Anhui Agr. Uni. 2012, 39, 677–681. [Google Scholar]
- Xi, X.; Fan, J.; Yang, X.; Liang, Y.; Zhao, X.; Wu, Y. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae. Biol. Control 2022, 166, 104818. [Google Scholar] [CrossRef]
- Liu, D.; Li, K.Y.; Hu, J.L.; Wang, W.Y.; Liu, X.; Cao, Z.M. Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean Phytophthora blight. Int. J. Mol. Sci. 2019, 20, 2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.M.; Li, M.; Tan, G.J.; Wang, Z.Y.; Zhao, P.S. Screening and identification of antagonistic strain against Phytophthora sojae. J. Anhui Agric. Sci. 2011, 39, 11482–11484. [Google Scholar]
- Lu, X.; Zhou, D.; Chen, X.; Zhang, J.; Huang, H.; Wei, L. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil 2017, 416, 53–66. [Google Scholar] [CrossRef]
- Han, X.D.; Hua, M.N.; Feng, Y.J.; Wu, C.V. Isolation and characterization of endophytic bacteria for Phytophthora sojae inhibition from soybean plant. Soybean Sci. 2012, 32, 85–91. [Google Scholar]
- Hou, J.M.; Bi, S.N.; Yan, L.; Zuo, Y.H.; Wang, Y.J.; Liu, T.; Zhu, J.W. Biological potential of Pseudomonas sp. BS1 in the control of Phytophthora root rot of soybean. Afr. J. Microbiol. Res. 2012, 6, 3589–3593. [Google Scholar]
- Arfaoui, A.; Adam, L.R.; Bezzahou, A.; Daayf, F. Isolation and identification of cultivated bacteria associated with soybeans and their biocontrol activity against Phytophthora sojae. BioControl 2018, 63, 607–617. [Google Scholar] [CrossRef]
- Jiu, M.; Li, J.J.; Li, W.S.; Feng, H.; Liu, R.X.; Wei, L.H.; Zhou, D.M. Screening, identification and biocontrol effect of actinomycetes against Phytophthora sojae. Jiangsu J. Agric. Sci. 2021, 37, 1137–1142. [Google Scholar]
- Xiao, K.; Kinkel, L.L.; Samac, D.A. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol. Control 2002, 23, 285–295. [Google Scholar] [CrossRef]
- Arfaoui, A.; El Hadrami, A.; Adam, L.R.; Daayf, F. Combining Streptomyces hygroscopicus and phosphite boosts soybean’s defense responses to Phytophthora sojae. BioControl 2020, 65, 363–375. [Google Scholar] [CrossRef]
- Han, X.S.; Shen, D.X.; Xiong, Q.; Bao, B.H.; Zhang, W.B.; Dai, T.T.; Zhao, Y.J.; Borriss, R.; Fan, B. The pant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl. Environ. Microbiol. 2021, 87, e0160121. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Han, Y.Q.; Shi, L.L.; Wang, Y.J.; Wang, W.D.; Xiang, W.S.; Gao, Y.M. Isolation of a actinomycete with inhibitory activity against Phytophthora sojae in soil. Heilongjiang Agric. Sci. 2016, 5, 64–68. [Google Scholar]
- Zhang, H.Y.; Gao, Q.; Zhang, L.Y.; Lin, G.L.; Li, R.L. Screening of actinomycetes against Phytophthora root rot of soybean and its growth promotion and disease control. Biotechnol. Bull. 2020, 36, 25–31. [Google Scholar]
- Zhao, L.F.; Xu, Y.J.; Zheng, A.Z.; Lai, X.H. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz. J. Microbiol. 2018, 49, 269–278. [Google Scholar] [CrossRef]
- Liu, S.F.; Chen, S.Y. Effectiveness of Hirsutella minnesotensis and H. rhossiliensis in control of the soybean cyst nematode in four soils with various pH, texture, and organic matter. Biocontrol Sci. Technol. 2009, 19, 595–612. [Google Scholar] [CrossRef]
- Qian, H.L.; Li, S.X.; Xu, Y.L.; Li, C.J.; Sun, Y.Q. Effects of two Hirsutella minnesotensis on soybean cyst nematode and soybean growth. Soybean Sci. 2011, 30, 266–271. [Google Scholar]
- Qian, H.L.; Xu, Y.L.; Sun, Y.Q.; Li, C.J. Effects of Hirsutella minnesotensis metabolites on soybean cyst nematode juvenile. Soybean Sci. 2009, 28, 119–122. [Google Scholar]
- Liu, J.B.; Zhu, W.J.; Hamid, M.I.; Chen, X.L.; Wang, N.N.; Sun, J.Z. Population dynamics and biocontrol efficacy of the nematophagous fungus Hirsutella minnesotensis in pot assay. Nematology 2016, 18, 823–830. [Google Scholar] [CrossRef]
- Liu, X.Z.; Chen, S.Y. Screening isolates of Hirsutella species for biocontrol of Heterodera glycines. Biocontrol Sci. Technol. 2001, 11, 151–160. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, X.Z. Control of soybean cyst nematode by the fungi Hirsutella rhossiliensis and Hirsutella minnesotensis in greenhouse studies. Biol. Control. 2005, 32, 208–219. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.X.; Xu, L.J.; Zhao, H.H.; Liu, R.J. The effectiveness of arbuscular mycorrhizal fungi to antagonize soybean cyst nematode disease. Microbiol. China 2010, 37, 1610–1616. [Google Scholar]
- Li, H.Y.; Liu, R.J.; Shu, H.R. A preliminary report on interactions between arbuscular mycorrhizal fungi and soybean cyst nematode. Acta Phytopathol. Sin. 2002, 32, 356–360. [Google Scholar]
- Li, T.; Huang, W.K.; Peng, D.L.; Kong, L.A.; Peng, H. Control efficiencyof three fungal strains’ fermentation broth on soybean cyst nematode (Heterodera glycines). J. Huazhong Agric. Univ. 2017, 36, 42–46. [Google Scholar]
- Pawlowski, M.L.; Hartman, G.L. Impact of arbuscular mycorrhizal species on Heterodera glycines. Plant Dis. 2020, 104, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.C.; Xu, Y.L.; Song, J. Effect of soil disturbance to the biological control of fermentation filtrate of parasitic fungi on soybean cyst nematode in glasshouse. Soybean Sci. 2016, 35, 106–111. [Google Scholar]
- Xu, Y.L.; Lu, J.C.; Song, J. Virulence and control effect of parasitic fungi on race 3 of soybean cyst nematode. Soybean Sci. 2020, 39, 595–604. [Google Scholar]
- Yan, J.C.; Xing, Z.F.; Lei, P.; Sikandar, A.; Yang, R.W.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.Y.; Xuan, Y.H.; et al. Evaluation of scopoletin from Penicillium janthinellum Snef1650 for the control of Heterodera glycines in soybean. Life 2021, 11, 1143. [Google Scholar] [CrossRef]
- Haarith, D.; Kim, D.; Chen, S.; Bushley, K.E. Growth chamber and greenhouse screening of promising in vitro fungal biological control candidates for the soybean cyst nematode (Heterodera glycines). Biological Control 2021, 160, 104635. [Google Scholar] [CrossRef]
- Silva, D.M.; de Souza, V.H.M.; Moral, R.d.A.; Delalibera Junior, I.; Mascarin, G.M. Production of Purpureocillium lilacinum and Pochonia chlamydosporia by submerged liquid fermentation and bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation. J. Fungi 2022, 8, 511. [Google Scholar] [CrossRef]
- Xiang, N.; Lawrence, K.S.; Kloepper, J.W.; Donald, P.A.; McInroy, J.A. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS ONE 2017, 12, e0181201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, D.; Wang, Y.Y.; Zhu, X.F.; Chen, L.J.; Duan, Y.X. Evaluation of Bacillus aryabhattai Sneb517 for control of Heterodera glycines in soybean. Biol. Control 2020, 142, 104147. [Google Scholar] [CrossRef]
- Duan, Y.X.; Zhang, Y.; Zhu, X.F.; Liu, D.W.; Li, S.; Chen, L.J.; Wang, Y.Y. Biochemical mechanism of resistance against soybean cyst nematode induced by plant growth promoting rhizobacteria in soybean. Soybean Sci. 2011, 30, 442–446. [Google Scholar]
- Zhou, Y.Y.; Wang, Y.Y.; Zhu, X.F.; Liu, R.; Xiang, P.; Chen, J.S.; Liu, X.Y.; Duan, Y.X.; Chen, L.J. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean. PLoS ONE 2017, 12, e0182654. [Google Scholar] [CrossRef]
- Liu, C.J.; Cao, C.X.; Zhou, R.H.; Cheng, X.L. Field Tests of Bacillus thuringiensis for controlling Heterodera glycines Ichinohe. Hubei Agric. Sci. 2011, 50, 520–522. [Google Scholar]
- Wang, Y.Y.; Duan, Y.X.; Chen, L.J. Effect of endophytic bacteria from soybean root nodules on soybean cyst nematode and pathogens of soybean root rot. Soybean Sci. 2007, 26, 213–217. [Google Scholar]
- Liu, D.; Chen, L.; Zhu, X.F.; Wang, Y.Y.; Xuan, Y.H.; Liu, X.Y.; Chen, L.J.; Duan, Y.X. Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth. Front. Microbiol. 2018, 9, 1134. [Google Scholar] [CrossRef] [PubMed]
- Yuen, G.Y.; Broderick, K.C.; Jochum, C.C.; Chen, C.J.; Caswell-Chen, E.P. Control of cyst nematodes by Lysobacter enzymogenes strain C3 and the role of the antibiotic HSAF in the biological control activity. Biol. Control 2018, 117, 158–163. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, D.; Wang, Y.Y.; Zhu, X.F.; Xuan, Y.H.; Liu, X.Y.; Fan, H.Y.; Chen, L.J.; Duan, Y.X. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. Pest Manag. Sci. 2019, 75, 3381–3391. [Google Scholar] [CrossRef]
- Xiang, P.; Hao, J.G.; Zhang, W.; Li, B.H.; Lu, W.C. Identification and field control efficacy of biocontrol actinomycetes against Heterodera glycines. Chin. J. Oil Crop Sci. 2017, 39, 234–238. [Google Scholar]
- Chen, L.J.; Chen, J.S.; Zheng, Y.N.; Dong, J.; Yu, B.S.; Duan, Y.X. Identification of actinomycetes strain Snea253 and its activity against soybean cyst nematode. Chin. J. Biol. Control 2009, 25, 66–69. [Google Scholar]
- Jin, N.; Liu, S.M.; Peng, H.; Huang, W.K.; Kong, L.A.; Peng, D.L. Effect of Aspergillus niger NBC001 on the soybean rhizosphere microbial community in a soybean cyst nematode-infested field. J. Integr. Agric. 2021, 20, 3230–3239. [Google Scholar] [CrossRef]
- Jin, N.; Liu, S.M.; Peng, H.; Huang, W.K.; Kong, L.A.; Wu, Y.H.; Chen, Y.P.; Ge, F.Y.; Jian, H.; Peng, D.L. Isolation and characterization of Aspergillus niger NBC001 underlying suppression against Heterodera glycines. Sci. Rep. 2019, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Li, H.X.; Xu, Z.P.; Luo, N.; Han, S.M. Nematocidal activities and species identification of three biocontrol fungi. Soybean Sci. 2019, 38, 576–583. [Google Scholar]
- Shinya, R.; Aiuchi, D.; Kushida, A.; Tani, M.; Kuramochi, K.; Koike, M. Pathogenicity and its mode of action in different sedentary stages of Heterodera glycines (Tylenchida: Heteroderidae) by Verticillium lecanii hybrid strains. Appl. Entomol. Zool. 2008, 43, 227–233. [Google Scholar] [CrossRef]
- Xu, Y.L.; Lu, J.C.; Song, J. The virulence of 3 parasitic fungi fermentation filtrates on race 4 of soybean cyst nematode. Soils Crops. 2020, 9, 22–30. [Google Scholar]
- Chen, L.J.; Liu, B.; Duan, Y.X.; Zhang, G.D. Effect of fermentation filtrate of Beauveria on bio-activities of different nematodes. J. Shenyang Agric. Univ. 2008, 39, 305–308. [Google Scholar]
- Zhao, X.H.; Xu, Y.L. Inhibition of Fusarium spp. fermented filtrates on soybean cyst nematode. Soybean Sci. 2011, 30, 471–474. [Google Scholar]
- Li, J.X.; Li, H.; Wang, W.H.; Zhu, X.C.; Liu, R.J. Effects of arbuscular mycorrhizal fungal arbuscule development on soybean cyst nematode diseases. J. Qingdao Agric. Univ. 2010, 27, 95–99. [Google Scholar]
- Bajaj, R.; Hu, W.M.; Huang, Y.Y.; Chen, S.Y.; Prasad, R.; Varma, A.; Bushley, K.E. The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Biol. Control 2015, 90, 193–199. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Guo, Y.X.; Duan, Y.X.; Li, H.Y.; Chen, L.J. Prevention effect and photosynthetic performance in Bacillus megaterium Sneb207 against soybean cyst nematode. Soybean Sci. 2020, 39, 605–611. [Google Scholar]
- Zhou, Y.Y.; Chen, J.S.; Zhu, X.F.; Wang, Y.Y.; Liu, X.Y.; Fan, H.Y.; Duan, Y.; Chen, L.J. Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode (Heterodera glycines) in soybean. Pest Manag. Sci. 2020, 77, 568–576. [Google Scholar] [CrossRef]
- Li, X.M.; Du, C.M.; Zheng, N.; Chi, L.; Pu, Z.G.; Han, D.W.; Wang, L.D. Inhibitory effect of Bacillus BL-21, HNDF2 on soybean cyst nematode. Soybean Sci. 2011, 30, 710–712. [Google Scholar]
- Fu, Y.; Li, J.; Zhang, Z.A.; Zhou, Y.Y. Separation and identification of Bacillus sp. Antagonistic to soybean cyst nematode. Heilongjiang Agric. Sci. 2022, 2, 36–40. [Google Scholar]
- Wang, Y.Y.; Si, B.B. Virulence of soybean rhizosphere bacteria on Heterodera glycines in Ningxia. Agrochemicals 2016, 55, 844–846. [Google Scholar]
- Wang, Y.Y.; Yang, R.W.; Feng, Y.X.; Sikandar, A.; Zhu, X.F.; Fan, H.Y.; Liu, X.Y.; Chen, L.J.; Duan, Y.X. iTRAQ-based proteomic analysis reveals the role of the biological control agent, Sinorhizobium fredii strain Sneb183, in enhancing soybean resistance against the soybean cyst nematode. Front. Plant Sci. 2021, 11, 597819. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.Y.; Zhu, X.F.; Chen, L.J.; Duan, Y.X. Effect of Sinorhizobium fredii strain Sneb183 on the biological control of soybean cyst nematode in soybean. J. Basic Microbiol. 2014, 54, 1258–1263. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Duan, Y.X.; Chen, L.J. Antagonim of rhizobium against pathogens of soybean root. Acta Phytopathol. Sin. 2008, 38, 607–612. [Google Scholar]
- Zhao, J.; Xing, Z.F.; Tian, M.X.; Liu, X.Y.; Wang, Y.Y.; Liu, D.; Chen, L.J.; Duan, Y.X. Isolation and identification of nematicidal compound from Microbacterium maritypicum Sneb159. Acta Microbiologica Sin. 2020, 60, 2341–2349. [Google Scholar]
- Ma, L.L.; Xu, Y.L.; Li, C.J.; Tai, L.M. Effect of Photorhabdus sp. NJ metabolites on Heterodera glycines. Chin. J. Oil Crop Sci. 2008, 30, 370–373. [Google Scholar]
- Liu, C.X.; Zhuang, X.X.; Yu, Z.Y.; Wang, Z.Y.; Wang, Y.J.; Guo, X.W.; Xiang, W.S.; Huang, S.X. Community structures and antifungal activity of root-associated endophytic actinobacteria of healthy and diseased soybean. Microorganisms 2019, 7, 243. [Google Scholar] [CrossRef]
- Sun, Z.B.; Sun, M.H.; Zhou, M.; Li, S.D. Transformation of the endochitinase gene Chi67-1 in Clonostachys rosea 67-1 increases its biocontrol activity against Sclerotinia sclerotiorum. AMB Express 2017, 7, 1. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yang, Q.; Hu, S.; Zhang, J.D.; Ma, J. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Appl. Microbiol. Biotechnol. 2008, 80, 241–252. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.Y.; Wu, W.P.; Liu, X.Z.; Li, S.D. Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiol. Res. 2009, 164, 665–673. [Google Scholar] [CrossRef]
- Zhang, F.L.; Ge, H.L.; Zhang, F.; Guo, N.; Wang, Y.C.; Chen, L.; Ji, X.; Li, C.W. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol. Bioch. 2016, 100, 64–74. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef] [Green Version]
Biocontrol Microorganisms | Strain Name and Reference | Application Scale |
---|---|---|
Fungi | ||
Trichoderma harzianum | BAFC 742 [28] | Field |
T-22 [26] | Field | |
Trichoderma asperelloides | T25 [29] | Field |
T42 [29] | Field | |
37/12 [30] | Greenhouse | |
91/12 [30] | Greenhouse | |
Trichoderma atroviride | 07/01 [30] | Greenhouse |
30/12 [30] | Greenhouse | |
Trichoderma koningiopsis | 62/12 [30] | Greenhouse |
103/12 [30] | Greenhouse | |
Clonostachys rosea | 67-1 [31] | Greenhouse |
BAFC3874 [32] | Greenhouse | |
BAFC1646 [33] | Greenhouse | |
Coniothyrium minitans | CON/M/91–08 [26] | Field |
Sporidesmium sclerotivorum | CS-5 [34] | Field |
Fusarium oxysporum | S6 [35] | Greenhouse |
Myrothecium sp. | isolate 2 [36] | Greenhouse |
Phialomyces macrosporus | - [36] | Greenhouse |
Volutella minima | - [36] | Greenhouse |
Funneliformis mosseae | BEG 12 [37] | Greenhouse |
Bacteria | ||
Bacillus sp. | BA122R [38] | Greenhouse |
Bacillus amyloliquefaciens | MEP218 [39] | Greenhouse |
ARP23 [39] | Greenhouse | |
BNM340 [40] | Pots | |
Bacillus pumilus | BA25R [38] | Greenhouse |
Bacillus cereus | BA78R [38] | Greenhouse |
BA81R [38] | Greenhouse | |
BA88R [38] | Greenhouse | |
Bacillus subtilis | SB01 [41] | Field |
SB24 [41] | Field | |
QST 713 [27] | Field | |
ZH-2 [34] | Field | |
Lysobacter enzymogenes | C3 [42] | Greenhouse |
Pseudomonas fluorescens | BNM296 [40] | Growth chamber |
Pseudomonas putida | BA15R [38] | Greenhouse |
Pantoea cypripedii | BA45R [38] | Greenhouse |
Enterobacter sp. | BA48R [38] | Greenhouse |
BA103R [38] | Greenhouse | |
BA110R [38] | Greenhouse | |
BA80R [38] | Greenhouse | |
Enterobacter oryzae | BA106R [38] | Greenhouse |
Enterobacter asburiae | BA123R [38] | Greenhouse |
BA203R [38] | Greenhouse | |
Streptomyces sp. | NEAU-S7GS2 [43] | Greenhouse |
Streptomyces somaliensis | SSD41 [44] | Greenhouse |
SSD49 [44] | Greenhouse | |
Streptomyces hydrogenans | SSD60 [44] | Greenhouse |
Streptomyces lydicus | WYEC 108 [26] | Field |
Biocontrol Microorganisms | Strain Name and Reference | Application Scale |
---|---|---|
Fungi | ||
Aspergillus effusus | - [59] | Pot |
Glomus intraradices | BGC BJ09 [60] | Chamber |
Trichoderma virens | - [58] | Greenhouse |
Trichoderma orientalis | - [58] | Greenhouse |
Trichoderma ceramicum | - [58] | Greenhouse |
Trichoderma atroviride | - [58] | Greenhouse |
Trichoderma koningii | - [58] | Greenhouse |
Trichoderma brevicompactum | - [58] | Greenhouse |
Trichoderma spirale | - [58] | Greenhouse |
Trichoderma pseudokoningii | - [58] | Greenhouse |
Trichoderma viridescens | - [58] | Greenhouse |
Trichoderma harzianum | - [58] | Greenhouse |
Trichoderma asperellum | - [58] | Greenhouse |
Trichoderma koningiopsis | - [58] | Greenhouse |
Trichoderma longibrachiaum | T115D [61] | Pot |
Bacteria | ||
Bacillus subtitlis | BY-2 [62] | Pot |
SN342 [63] | Greenhouse | |
RSS-1 [64] | Pot | |
Bacillus cereus | SN340 [63] | Greenhouse |
Bacillus velezensis | SN337 [63] | Greenhouse |
Bacillus licheniformis | SN338 [63] | Greenhouse |
Bacillus pumilus | B048 [65] | Pot |
Bacillus altitudinis | JSCX-1 [66] | Greenhouse |
Bacillus amyloliquefaciens | JDF3 [64] | Pot |
Bacillus sp. | A4 [67] | Pot |
Pseudomonas sp. | A2 [67] | Pot |
BS1 [68] | Greenhouse | |
Pseudomonas aeruginosa | SN339 [63] | Greenhouse |
Paenibacillus polymyxa | S1 [69] | Pot |
Actinomycetales bacterium | JAX-13 [70] | Pot |
Streptomyces | ||
93 [71] | Pot | |
15 [71] | Pot | |
GS-8-1 [71] | Pot | |
GS-43-5 [71] | Pot | |
GS-2-21 [71] | Pot | |
PonSSII [71] | Pot | |
Streptomyces sp. | JAX-14 [70] | Pot |
Streptomyces hygroscopicus | S11 [72] | Greenhouse |
Biocontrol Microorganisms | Strain Name and Reference | Application Scale |
---|---|---|
Fungi | ||
Hirsutella rhossiliensis | OWVT-1 [81] | Greenhouse |
ATCC46487 [81] | Greenhouse | |
MO1-1 [81] | Greenhouse | |
FR6-1 [81] | Greenhouse | |
JA9-1 [81] | Greenhouse | |
LE5.1-1 [81] | Greenhouse | |
WT8-1 [81] | Greenhouse | |
MA36.4-1 [81] | Greenhouse | |
ST8-1 [81] | Greenhouse | |
MA30-1 [81] | Greenhouse | |
WT4-1 [81] | Greenhouse | |
MA37-1 [81] | Greenhouse | |
Hirsutella minnesotensis | RW7-1 [81] | Greenhouse |
AS3G1 [80] | Pot | |
WA23-1 [82] | Greenhouse | |
FA2-1 [81] | Greenhouse | |
1-10 [78] | Greenhouse | |
HLJ07-21-3 [78] | Greenhouse | |
Glomus mosseae | - [83] | Greenhouse |
Glomus etunicatum | - [83] | Greenhouse |
Glomus fasiculatum | - [84] | Greenhouse |
Glomus intraradices | - [84] | Greenhouse |
Glomus versiforme | - [84] | Greenhouse |
Gigaspora margarita | - [84] | Greenhouse |
Aspergillus niger | NBC001 [85] | Field |
Clairoideoglomus claroideum | - [86] | Greenhouse |
Dentiscutata heterogama | - [86] | Greenhouse |
Diversispora eburnean | - [86] | Greenhouse |
Funneliformis mosseae | - [86] | Greenhouse |
Fusarium spp. | F-9-3 [87] | Greenhouse |
F-V-1-4 [87] | Greenhouse | |
F-9 [88] | Greenhouse | |
Paecilomyces lilacinus | P-V-7-2 [87] | Greenhouse |
P-E-13-2 [87] | Greenhouse | |
P-E [88] | Greenhouse | |
Pochonia chlamydosporium | V-25-3 [87] | Greenhouse |
V-21-2 [87] | Greenhouse | |
Penicillium oxalicum | NBC008 [85] | Pot |
NBC012 [85] | Pot | |
Penicillium janthinellum | Snef1650 [89] | Field |
Purpureocillium sp. | E [90] | Greenhouse |
T [90] | Greenhouse | |
Purpureocillium lilacinum | ESALQ1744 [91] | Greenhouse |
ESALQ2482 [91] | Greenhouse | |
ESALQ2593 [91] | Greenhouse | |
Rhizophagus intraradices | - [86] | Greenhouse |
Verticillium chlamydosporium | V-25 [88] | Greenhouse |
Bacteria | ||
Bacillus altitudinis | Bal13 [92] | Field |
Bacillus subtilis | Bsssu2 [92] | Field |
Bacillus aryabhattai | Sneb517 [93] | Field |
Bacillus mojavensis | Bmo3 [92] | Greenhouse |
Bacillus megaterium | Sneb207 [94] | Field |
Sneb482 [95] | Field | |
Bacillus safensis | Bsa27 [92] | Field |
Bacillus simple | Sneb545 [95] | Field |
Bacillus velezensis | Bve12 [92] | Field |
Bve2 [92] | Field | |
Bacillus thuringiensis | - [96] | Field |
Bacillus sp. | Snb2 [97] | Greenhouse |
Klebsiella pneumoniae | SnebYK [98] | Field |
Sinorhizobium fredii | Sneb183 [95] | Field |
Lysobacter enzymogenes | C3 [99] | Pot |
Microbacterium maritypicum | Sneb159 [100] | Field |
Streptomyces sp. | XFS-4 [101] | Field |
XFS-5 [101] | Field | |
CL-4 [101] | Field | |
XS-3 [101] | Field | |
BJ-4 [101] | Field | |
XF-5 [101] | Field | |
Streptomyces venezuelae | Snea253 [102] | Field |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.-F.; Wang, C.-L.; Hu, Y.-F.; Wen, Y.-C.; Sun, Z.-B. Biocontrol of Three Severe Diseases in Soybean. Agriculture 2022, 12, 1391. https://doi.org/10.3390/agriculture12091391
Yu S-F, Wang C-L, Hu Y-F, Wen Y-C, Sun Z-B. Biocontrol of Three Severe Diseases in Soybean. Agriculture. 2022; 12(9):1391. https://doi.org/10.3390/agriculture12091391
Chicago/Turabian StyleYu, Shu-Fan, Chu-Lun Wang, Ya-Feng Hu, Yan-Chen Wen, and Zhan-Bin Sun. 2022. "Biocontrol of Three Severe Diseases in Soybean" Agriculture 12, no. 9: 1391. https://doi.org/10.3390/agriculture12091391
APA StyleYu, S.-F., Wang, C.-L., Hu, Y.-F., Wen, Y.-C., & Sun, Z.-B. (2022). Biocontrol of Three Severe Diseases in Soybean. Agriculture, 12(9), 1391. https://doi.org/10.3390/agriculture12091391