Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Observation
2.2. Bowen Ratio Energy Balance Method
2.3. Shuttleworth–Wallace (S-W) Model
Estimation of Resistances
2.4. Dual Crop Coefficient (D-K) Method
2.4.1. Reference Evapotranspiration
2.4.2. Basal Crop Coefficient (Kcb) and Soil Evaporation Coefficient (Ke)
2.5. Evaluation of Models’ Performance
3. Results
3.1. Interannual Variability of Climatic Factors at the Tea Field
3.2. Parameterization of
3.3. Crop Coefficient (Kc), Basal Crop (Kcb), and Soil Evaporation Coefficient (Ke)
3.4. The Performance of Two Methods in ETc Simulation
4. Discussion
4.1. Parametrization of S-W Model
4.2. Prediction of Crop Coefficients
4.3. Comparison of Model Performance
4.4. Implications of the Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, E.H.; Zhang, H.B.; Sheng, J.; Li, K.; Zhang, Q.J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; et al. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Acquah, S.J.; Yan, H.F.; Zhang, C.; Wang, G.Q.; Zhao, B.S.; Wu, H.M.; Zhang, H.N. Application and evaluation of Stanghellini model in the determination of crop evapotranspiration in a naturally ventilated greenhouse. Int. J. Agric. Biol. Eng. 2018, 11, 95–103. [Google Scholar]
- Yan, H.F.; Acquah, S.J.; Zhang, C.; Wang, G.Q.; Huang, S.; Zhang, H.N.; Zhao, B.S.; Wu, H.M. Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models. Agric. Water Manag. 2019, 217, 201–211. [Google Scholar] [CrossRef]
- Stanghellini, C. Transpiration of Greenhouse Crops: An Aid to Climate Management. Ph.D. Thesis, Agricultural University of Wageningen, Wageningen, The Netherlands, 1987; 150p. [Google Scholar]
- Qiu, R.J.; Kang, S.Z.; Du, T.S.; Tong, L.; Hao, X.M.; Chen, R.Q.; Chen, J.L.; Li, F.S. Effect of convection on the Penman–Monteith model estimates of transpiration of hot pepper grown in solar greenhouse. Sci. Hortic. 2013, 160, 163–171. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.W.; Li, F.S.; Sun, J.S.; Wang, Y.C.; Sun, C.T. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodrı´guez, E.; Kubota, C.; Giacomelli, G.A.; Linker, R.; Arbel, A. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Sci. Hortic. 2012, 134, 210–221. [Google Scholar] [CrossRef]
- Valdés-Gómez, H.; Ortega-Farías, S.; Argote, M. Evaluation of water requirements for a greenhouse tomato crop using the Priestley–Taylor method. Chil. J. Agric. Res. 2009, 69, 3–11. [Google Scholar]
- Qiu, R.J.; Du, T.S.; Kang, S.Z.; Chen, R.Q.; Wu, L.S. Assessing the SIM-Dual Kc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China. Agric. Syst. 2015, 138, 1–9. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, P.; Ren, S.M.; Li, Y.K.; Liu, H.L.; Du, J.; Li, P.F.; Wang, C.Y.; Ren, L. Modeling cherry orchard evapotranspiration based on an improved dual-source model. Agric. Water Manag. 2010, 98, 12–18. [Google Scholar] [CrossRef]
- Gong, X.W.; Liu, H.; Sun, J.S.; Gao, Y.; Zhang, H. Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agric. Water Manag. 2019, 217, 141–153. [Google Scholar] [CrossRef]
- Huang, S.; Yan, H.F.; Zhang, C.; Wang, G.Q.; Acquah, S.J.; Yu, J.J.; Ma, J.M.; Li, L.L.; Opoku Darko, R. Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse. Agric. Water Manag. 2019, 228, 105861. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, Irrigation and Drainage; FAO: Roe, Italy, 1998; Volume 56, 300p. [Google Scholar]
- Ding, R.S.; Kang, S.Z.; Zhang, Y.Q.; Hao, X.M.; Tong, L.; Du, T.S. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.A.; Ortega-Farias, S.O. Evaluation of single and dual crop coefficients over a drip-irrigated Merlot vineyard (Vitis vinifera L.) using combined measurements of sap flow sensors and an eddy covariance system. Aust. J. Grape Wine Res. 2013, 19, 249–260. [Google Scholar] [CrossRef]
- Zhu, G.F.; Su, Y.H.; Li, X.; Zhang, K.; Li, C.B. Estimating actual evapotranspiration from an alpine grassland on Qinghai–Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J. Hydrol. 2013, 476, 42–51. [Google Scholar] [CrossRef]
- Zhu, G.F.; Li, X.; Su, Y.H.; Zhang, K.; Bai, Y.; Ma, J.Z.; Li, C.B.; Hu, X.L.; He, J.H. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China. Geosci. Model Dev. 2014, 7, 1467–1482. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.E.; Li, F.S.; Du, T.; Tong, L.; Kang, S.Z. Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manag. 2015, 160, 41–56. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Iritza, Z.; Lindrotha, A.; Heikinheimob, M.; Grellea, A.; Kellnerc, E. Test of a modified Shuttleworth–Wallace estimate of boreal forest evaporation. Agric. For. Meteorol. 1999, 98, 605–619. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Poblete-Echeverría, C.; Brisson, N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric. For. Meteorol. 2010, 150, 276–286. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Kang, S.Z.; Li, F.S.; Zhang, L. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agric. For. Meteorol. 2008, 148, 1629–1640. [Google Scholar] [CrossRef]
- Yan, H.F.; Oue, H. Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy. J. Agric. Meteorol. 2011, 67, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Wang, Y.K.; Wei, X.D.; Wei, X.G.; Wang, X.; Zhang, L.L. Measured and estimated evapotranspiration of jujube (ziziphus jujuba) forests in the loess plateau, china. Int. J. Agric. Biol. 2013, 15, 811–819. [Google Scholar]
- Gharsallah, O.; Facchi, A.; Gandolfi, C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agric. Water Manag. 2013, 130, 119–130. [Google Scholar] [CrossRef]
- Jiang, X.L.; Kang, S.Z.; Tong, L.; Li, S.E.; Ding, R.S.; Du, T.S. Modeling evapotranspiration and its components of maize for seed production in an arid region of northwest China using a dual crop coefficient and multisource models. Agric. Water Manag. 2019, 222, 105–117. [Google Scholar] [CrossRef]
- Anderson, R.G.; Alfieri, J.G.; Tirado-Corbalá, R.; Gartung, J.; McKee, L.G.; Prueger, J.H.; Wang, D.; Ayars, J.E.; Kustas, W.P. Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning. Agric. Water Manag. 2017, 179, 92–102. [Google Scholar] [CrossRef]
- Zhao, N.N.; Liu, Y.; Cai, J.B.; Paredes, P.; Rosa, R.D.; Pereira, L.S. Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water Manag. 2013, 117, 93–105. [Google Scholar] [CrossRef]
- Miao, Q.F.; Rosa, R.D.; Shi, H.B.; Paredes, P.; Zhu, L.; Dai, J.X.; Gonçalves, J.M.; Pereira, L.S. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agric. Water Manag. 2016, 165, 211–229. [Google Scholar] [CrossRef]
- Rosa, R.D.; Ramos, T.B.; Pereira, L.S. The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agric. Water Manag. 2016, 177, 77–94. [Google Scholar] [CrossRef]
- Yan, H.F.; Zhang, C.; Peng, G.J.; Darko, R.O.; Cai, B. Modelling canopy resistance for estimating latent heat flux at a tea field in South China. Exp. Agric. 2017, 54, 563–576. [Google Scholar] [CrossRef]
- Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.E.; Papale, D.; Soussana, J.F.; Ammann, C.; Buchmann, N.; Frank, D.; et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009, 23, GB2018. [Google Scholar] [CrossRef]
- Katerji, N.; Perrier, A. Modelisation de l’evapotranspiration reelle d’une parcelle de luzerne: Role d’un coefficient cultural. Agronomie 1983, 3, 513–521. [Google Scholar] [CrossRef]
- Monteith, J.L.; Szeicz, G.; Waggoner, P.E. The measurement and control of stomatal resistance in the field. J. Appl. Ecol. 1965, 2, 345–355. [Google Scholar] [CrossRef]
- Perez, P.J.; Lecina, S.; Castellvi, F.; Martinez-Cob, A.; Villalobos, F.J. A simple parameterization of bulk canopy resistance from climatic variables for estimating hourly evapotranspiration. Hydrol. Process. 2006, 20, 515–532. [Google Scholar] [CrossRef]
- Yan, H.F.; Shi, H.B.; Oue, H.; Zhang, C.; Xue, Z.; Cai, B.; Wang, G.Q. Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat. Meteorol. Atmos. Phys. 2015, 127, 305–312. [Google Scholar] [CrossRef]
- Perrier, A. Physical study of evapotranspiration in natural conditions. I. Evaporation and balance of energy of natural surfaces. Ann. Agron. 1975, 26, 1–18. [Google Scholar]
- Perrier, A. Physical study of evapotranspiration in natural conditions. III. Actual and potential evapotranspiration of canopies. Ann. Agron. 1975, 26, 229–243. [Google Scholar]
- ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation; Report by the Task Committee on Standardization of Reference Evapotranspiration; ASCE: Reston, VA, USA, 2005; 204p, ISBN 078440805X. [Google Scholar]
- Zhao, P.; Kang, S.Z.; Li, S.E.; Ding, R.S.; Tong, L.; Du, T.S. Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agric. Water Manag. 2018, 197, 19–33. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, H.F.; Takase, K.; Oue, H. Comparison of the soil physical properties and hydrological processes in two different forest type catchments. Water Resour. 2016, 43, 225–237. [Google Scholar] [CrossRef]
- Katerji, N.; Rana, G.; Fahed, S. Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: Critical evaluation for irrigated crops in the Mediterranean. Hydrol. Process. 2011, 25, 117–129. [Google Scholar] [CrossRef]
- Liu, G.S.; Liu, Y.; Hafeez, M.; Xu, D.; Vote, C. Comparison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia. J. Hydrol. 2012, 454–455, 1–6. [Google Scholar] [CrossRef]
- He, B.; Oue, H.; Oki, T. Estimation of Hourly Evapotranspiration in Arid Regions by a Simple Parameterization of Canopy Resistance. J. Agric. Meteorol. 2009, 65, 39–46. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N.; Mastorilli, M.; EI Moujabber, M.; Brisson, N. Validation of a model of actual evapotranspiration for water stresses soybeans. Agric. For. Meteorol. 1997, 86, 215–224. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Yan, H.F.; Zhang, C.; Gerrits, M.C.; Acquah, S.J.; Zhang, H.N.; Wu, H.M.; Zhao, B.S.; Huang, S.; Fu, H.W. Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber. Agric. For. Meteorol. 2018, 262, 370–378. [Google Scholar] [CrossRef]
- Bao, Y.Z.; Duan, L.M.; Liu, T.X.; Tong, X.; Wang, G.Q.; Lei, H.M.; Zhang, L.; Singh, V.P. Simulation of evapotranspiration and its components for the mobile dune using an improved dual-source model in semi-arid regions. J. Hydrol. 2021, 592, 125796. [Google Scholar] [CrossRef]
- Liu, X.Y.; Xu, J.Z.; Wang, W.G.; Lv, Y.P.; Li, Y.W. Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based. J. Hydrol. 2020, 590, 125435. [Google Scholar] [CrossRef]
- Pinho Sousa, D.; Fernandes, T.F.S.; Tavares, L.B.; Silva Farias, V.D.; Lima, M.J.A.; Nunes, H.G.G.C.; Costa, D.L.P.; Ortega-Farias, S.; Oliveira Ponte Souza, P.J. Estimation of evapotranspiration and single and dual crop coefficients of acai palm in the Eastern Amazon (Brazil) using the Bowen ratio system. Irrig. Sci. 2021, 39, 5–22. [Google Scholar] [CrossRef]
- Meijide, A.; Röll, A.; Fan, Y.; Herbst, M.; Niu, F.; Tiedemann, F.; June, T.; Rauf, A.; Hölscher, D.; Knohl, A. Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil palm age. Agric. For. Meteorol. 2017, 239, 71–85. [Google Scholar] [CrossRef]
- Flumignan, D.L.; Faria, R.T.; Cavenaghi Prete, C.E. Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agric. Water Manag. 2011, 98, 791–800. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.E.; Kang, S.Z.; Du, T.S.; Tong, L.; Hao, X.M.; Ding, R.S. Crop coefficient for spring maize under plastic mulch based on 12-year eddy covariance observation in the arid region of Northwest China. J. Hydrol. 2020, 588, 125108. [Google Scholar] [CrossRef]
- Singh Rawat, K.; Kumar Singh, S.; Bala, A.; Szabó, S. Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 2019, 213, 922–933. [Google Scholar] [CrossRef]
- Wang, S.T.; Zhu, G.F.; Xia, D.S.; Ma, J.Z.; Han, T.; Ma, T.; Zhang, K.; Shang, S.S. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric. Water Manag. 2019, 212, 388–398. [Google Scholar] [CrossRef]
- Agam, N.; Evett, S.R.; Tolk, J.A.; Kustas, W.P.; Colaizzi, P.D.; Alfieri, J.G.; Mckee, L.G.; Copeland, K.S.; Howell, T.A.; Chavez, J.L. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Adv. Water Resour. 2012, 50, 20–30. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Horton, R.; Xue, X.Z.; Ren, T.S. Partitioning evapotranspiration by measuring soil water evaporation with heat-pulse sensors and plant transpiration with sap flow gauges. Agric. Water Manag. 2021, 252, 106883. [Google Scholar] [CrossRef]
- Sauer, T.J.; Singer, J.W.; Prueger, J.H.; Desutter, T.M.; Hatfield, J.L. Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agric. For. Meteorol. 2007, 145, 206–214. [Google Scholar] [CrossRef]
- Wagle, P.; Skaggs, T.H.; Gowda, P.H.; Northup, B.K.; Neel, J.P.S. Flux variance similarity-based partitioning of evapotranspiration over a rainfed alfalfa field using high frequency eddy covariance data. Agric. For. Meteorol. 2020, 285–286, 107907. [Google Scholar] [CrossRef]
Year | Model | ETc-Mimulated | ETc-Measured | a | R2 | RMSE | MAE | d | Bias |
---|---|---|---|---|---|---|---|---|---|
2016 | S-W | 2.33 | 2.22 | 1.07 | 0.98 | 0.42 | 0.27 | 0.98 | 0.05 |
D-K | 2.17 | 1.00 | 0.95 | 0.59 | 0.43 | 0.96 | −0.02 | ||
2017 | S-W | 2.16 | 2.01 | 1.08 | 0.97 | 0.51 | 0.34 | 0.97 | 0.07 |
D-K | 1.95 | 0.96 | 0.93 | 0.67 | 0.47 | 0.94 | −0.03 | ||
2018 | S-W | 2.58 | 2.40 | 1.06 | 0.98 | 0.43 | 0.28 | 0.98 | 0.07 |
D-K | 2.31 | 0.95 | 0.96 | 0.58 | 0.39 | 0.97 | −0.04 | ||
Average | S-W | 2.36 | 2.21 | 1.07 | 0.97 | 0.45 | 0.30 | 0.98 | 0.06 |
D-K | 2.14 | 0.97 | 0.95 | 0.61 | 0.43 | 0.96 | −0.03 |
Year | Model | T (mm d−1) | E (mm d−1) | E/ETc |
---|---|---|---|---|
2016 | S-W | 1.89 | 0.59 | 23.79% |
D-K | 2.47 | 0.71 | 22.33% | |
2017 | S-W | 1.69 | 0.47 | 21.76% |
D-K | 2.35 | 0.64 | 21.40% | |
2018 | S-W | 2.05 | 0.52 | 20.23% |
D-K | 2.59 | 0.6 | 18.81% | |
Average | S-W | 1.88 | 0.53 | 21.93% |
D-K | 2.47 | 0.65 | 20.85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Huang, S.; Zhang, J.; Zhang, C.; Wang, G.; Li, L.; Zhao, S.; Li, M.; Zhao, B. Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China. Agriculture 2022, 12, 1392. https://doi.org/10.3390/agriculture12091392
Yan H, Huang S, Zhang J, Zhang C, Wang G, Li L, Zhao S, Li M, Zhao B. Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China. Agriculture. 2022; 12(9):1392. https://doi.org/10.3390/agriculture12091392
Chicago/Turabian StyleYan, Haofang, Song Huang, Jianyun Zhang, Chuan Zhang, Guoqing Wang, Lanlan Li, Shuang Zhao, Mi Li, and Baoshan Zhao. 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China" Agriculture 12, no. 9: 1392. https://doi.org/10.3390/agriculture12091392
APA StyleYan, H., Huang, S., Zhang, J., Zhang, C., Wang, G., Li, L., Zhao, S., Li, M., & Zhao, B. (2022). Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China. Agriculture, 12(9), 1392. https://doi.org/10.3390/agriculture12091392