Agricultural Production Optimization and Marginal Product Response to Climate Change
Abstract
:1. Introduction
2. Literature Review
2.1. Agricultural Inputs and Their Importance to Agricultural Growth in China
2.2. The Related Methods
2.3. The Effect of Climate Change on Agricultural Production
3. Materials and Methods
3.1. Data
3.2. Method of Estimating Marginal Product by Shadow Price Ratio
3.3. Econometric Strategy
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koondhar, M.A.; Shahbaz, M.; Ozturk, I.; Randhawa, A.A.; Kong, R. Revisiting the relationship between carbon emission, renewable energy consumption, forestry, and agricultural financial development for China. Environ. Sci. Pollut. Res. 2021, 28, 45459–45473. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.R. The Sources of Economic Growth; Harvard University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Jiangsu Provincial Bureau of Statistics. Fertilizer Usage; Jiangsu Provincial Bureau of Statistics: Nanjing, China, 2020.
- Wang, S.L.; Huang, J.; Wang, X.; Tuan, F. Are China’s regional agricultural productivities converging: How and why? Food Policy 2019, 86, 101727. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Qiao, W.; Peng, C. Measuring agricultural total factor productivity in China: Pattern and drivers over the period of 1978–2016. Aust. J. Agric. Resour. Econ. 2020, 64, 82–103. [Google Scholar] [CrossRef]
- Shu, Y.; Du, R.; Li, M.; Li, L. Research on the relationship between agricultural production input factors and agricultural growth. Reg. Res. Dev. 2019, 38, 160–164. [Google Scholar]
- Bacca, E.J.M.; Knight, A.; Trifkovic, M. Optimal land use and distributed generation technology selection via geographic-based multicriteria decision analysis and mixed-integer programming. Sustain. Cities Soc. 2020, 55, 102055. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Huang, J.; Min, S.; Tang, J. The impacts of the eco–environmental policy on grassland degradation and livestock production in Inner Mongolia, China: An empirical analysis based on the simultaneous equation model. Land Use Policy 2019, 88, 104167. [Google Scholar] [CrossRef]
- Gai, Q.; Zhu, X.; Shi, Q. The impact of labor transfer on China’s agricultural production. Econ. Q. 2014, 13, 1147–1170. [Google Scholar]
- Liao, L.; Long, H.; Gao, X.; Ma, E. Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry. Land Use Policy 2019, 88, 104152. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Hui, X.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Zuo, L.; Liu, B.; Yi, L.; Xu, J.; Wen, Q. Temporal and spatial characteristics of cultivated land change in China in recent 30 years and analysis of its main causes. J. Agric. Eng. 2014, 30, 1–11. [Google Scholar]
- Key, N.; McBride, W.D.; Ribaudo, M.; Sneeringer, S. Trends and Developments in Hog Manure Management: 1998–2009; Economic Information Bulletin Number 81; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2011; Volume 81, p. 1.
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, D. Re-examination of the factor contribution rate from the perspective of agricultural green growth. J. Hunan Agric. Univ. 2021, 22, 9–17, 25. [Google Scholar]
- Shi, Y.; Wang, T.; Gao, J. Current situation, problems and Countermeasures of rural labor transfer in Jiangsu province. Jiangsu Agric. Sci. 2014, 42, 466–468. [Google Scholar]
- Lv, X.; Shi, Y.; Huang, X.; Sun, X.; Miao, Z. Atlas characteristics of land use change in Jiangsu province. J. Appl. Ecol. 2016, 27, 72–79. [Google Scholar]
- Chen, S.; Gong, B.L. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2020, 148, 102557. [Google Scholar] [CrossRef]
- Yi, F.; Zhou, T.; Chen, X. Climate change, agricultural research input and agricultural total factor productivity. J. Nanjing Agric. Univ. Soc. Sci. Ed. 2021, 21, 155–167. [Google Scholar]
- Yang, Z. The impact of land investment on economic growth based on panel data: A case study of Zhejiang Province. Resour. Environ. Yangtze River Basin. 2009, 18, 409–415. [Google Scholar]
- Li, J. Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data. Socio-Econ. Plan. Sci. 2019, 67, 69–77. [Google Scholar] [CrossRef]
- Shen, T.; Wang, S.; Fan, D. The impact of technological progress and factor input on agricultural economic growth under the new normal—Based on the analysis and prediction of Sichuan Province. West. China 2019, 6, 45–58. [Google Scholar]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yan, H.; Sun, Z. Allocating agricultural production factors: A scenario–based modeling of wheat production in Shandong Province, China. Phys. Chem. Earth 2016, 96, 55–63. [Google Scholar] [CrossRef]
- Wu, Y. Measurement of input output elasticity of regional agricultural production factors in China: An empirical study based on spatial econometric model. China’s Rural Econ. 2010, 6, 25–37. [Google Scholar]
- Ma, L.; Long, H.; Tang, L.; Tu, S.; Zhang, Y.; Qu, Y. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric. 2021, 180, 105890. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Shen, S.; Gao, P.; Zhu, D. Spatial pattern of arable land-use intensity in China. Land Use Policy. 2020, 99, 104845. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Albers, H.; Gornott, C.; Hüttel, S. How do inputs and weather drive wheat yield volatility? The example of Germany. Food Policy 2017, 70, 50–61. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, W. Factor supply and productivity growth of Japonica Rice in China: Technology driven or efficiency driven, Based on DEA Tobit model. Agric. Econ. Manag. 2016, 6, 35–42. [Google Scholar]
- Li, G.; Fan, L.; Feng, Z. Capital accumulation, institutional change and agricultural growth. Manag. World. 2014, 5, 67–79, 92. [Google Scholar]
- Meeusen, W.; van den Broeck, J. Efficiency estimation from Cobb–Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A Stochastic Frontier Production Function Incorporating a Model for Inefficiency Effects. Work. Pap. Econom. Appl. Stat. 1993, 70, 10010399289. [Google Scholar]
- Wang, C.; Wu, J. Research on the technical efficiency and its influencing factors of maize industry in China—Based on the provincial panel data from 2001 to 2011. Agric. Resour. Reg. China 2015, 36, 23–32. [Google Scholar]
- Cheng, L.; Xu, Y.; Tao, C. How much loss does element misplacement bring to China’s agriculture—Stochastic frontier model based on transcendental logarithmic production function. J. Manag. 2016, 29, 24–34. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Jiao, Y. Evaluation of agricultural production efficiency in Shandong Province. Popul. Resour. Environ. China 2013, 23, 105–110. [Google Scholar]
- Yin, C.; Li, G.; Fan, L.; Gao, X. Climate change, science and technology stock and agricultural productivity Growth. China Rural Econ. 2016, 5, 16–28. [Google Scholar]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res. 2004, 85, 167–190. [Google Scholar] [CrossRef]
Year | Labor | Land | Machinery | Fertilizers | Pesticides | Output |
---|---|---|---|---|---|---|
2001 | 111.69 | 590.29 | 228.81 | 26.00 | 0.70 | 2.18 |
2002 | 104.16 | 588.77 | 229.53 | 25.95 | 0.66 | 2.22 |
2003 | 94.64 | 576.11 | 233.75 | 25.68 | 0.68 | 1.78 |
2004 | 87.47 | 582.07 | 234.37 | 25.89 | 0.71 | 2.04 |
2005 | 81.41 | 586.81 | 242.78 | 26.22 | 0.79 | 1.97 |
2006 | 75.54 | 584.62 | 261.18 | 26.38 | 0.76 | 2.09 |
2007 | 71.55 | 567.76 | 260.95 | 26.31 | 0.74 | 2.06 |
2008 | 68.95 | 584.60 | 279.30 | 26.21 | 0.72 | 2.26 |
2009 | 67.41 | 591.81 | 293.12 | 26.46 | 0.71 | 2.62 |
2010 | 66.14 | 601.31 | 302.87 | 26.24 | 0.69 | 2.79 |
2011 | 63.21 | 603.76 | 315.85 | 25.94 | 0.67 | 2.97 |
2012 | 61.23 | 606.37 | 324.20 | 25.46 | 0.64 | 3.33 |
2013 | 59.70 | 606.08 | 339.53 | 25.14 | 0.62 | 3.63 |
2014 | 58.62 | 603.75 | 357.69 | 24.89 | 0.61 | 3.90 |
2015 | 56.62 | 603.51 | 371.37 | 24.61 | 0.60 | 4.17 |
2016 | 55.59 | 595.53 | 377.43 | 24.04 | 0.59 | 4.25 |
2017 | 55.59 | 583.64 | 383.95 | 23.37 | 0.56 | 4.33 |
2018 | 54.46 | 578.50 | 387.87 | 22.49 | 0.54 | 4.45 |
Notation | Economic Interpretation | Formula |
---|---|---|
The GDP expansion resulting from an extra unit of labor use, or the marginal product of labor. | ||
The GDP expansion resulting from an extra unit of land use, or the marginal product of land. | ||
The GDP expansion resulting from an extra unit of machinery use, or the marginal product of machinery. | ||
The GDP expansion resulting from an extra unit of fertilizer use, or the marginal product of fertilizers. | ||
The GDP expansion resulting from an extra unit of pesticide use, or the marginal product of pesticides. |
City | SPLand | SPLabor | SPMachinery | SPFerilizer | SPPesticide |
---|---|---|---|---|---|
Unit | 103$/ha | 103$/Person | 103$/kwh | 103$/ton | $/ton |
Changzhou | 3.58 | 0.00 | 0.08 | 15.18 | 0.00 |
Huai’an | 1.39 | 0.47 | 0.16 | 2.88 | 3.83 |
Lianyungang | 3.79 | 0.00 | 0.19 | 0.00 | 3.83 |
Nanjing | 1.21 | 1.21 | 0.07 | 2.99 | 0.00 |
Nantong | 0.05 | 0.00 | 0.00 | 7.74 | 0.00 |
Suqian | 1.88 | 0.14 | 0.44 | 3.33 | 0.00 |
Suzhou | 3.56 | 0.00 | 0.04 | 1.00 | 3.83 |
Taizhou | 0.13 | 0.05 | 1.05 | 0.54 | 0.00 |
Wuxi | 2.90 | 0.02 | 0.41 | 1.47 | 0.00 |
Xuzhou | 1.06 | 0.00 | 0.00 | 1.31 | 0.00 |
Yancheng | 0.34 | 1.77 | 0.00 | 0.79 | 0.00 |
Yangzhou | 0.00 | 0.40 | 1.04 | 0.28 | 0.00 |
Zhenjiang | 0.15 | 0.09 | 0.52 | 243.73 | 0.00 |
Average | 1.54 | 0.32 | 0.31 | 21.63 | 0.88 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Spland | Lnspfertilize | Lnsplabor | Lnspmachinery |
temperature | 0.203 | 0.366 * | 0.208 | 0.328 ** |
(1.22) | (1.81) | (0.75) | (2.38) | |
share | 4.941 * | 1.460 | 7.866 * | 0.494 |
(1.79) | (0.63) | (1.84) | (0.22) | |
land | 0.002 | |||
(0.81) | ||||
fertilizer | −0.007 | |||
(−0.13) | ||||
labor | −0.020 | |||
(−0.79) | ||||
machinery | −0.012 ** | |||
(−2.55) | ||||
Constant | −133.543 *** | −193.468 *** | −64.797 | −192.545 *** |
(−3.09) | (−3.43) | (−0.42) | (−3.21) | |
Year Fe | YES | YES | YES | YES |
Observations | 106 | 105 | 36 | 76 |
R-squared | 0.168 | 0.207 | 0.411 | 0.223 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Spland | Lnspfertilize | Lnsplabor | Lnspmachinery |
precipitation | −0.009 ** | −0.007 | −0.001 | 0.002 |
(−2.15) | (−1.52) | (−0.22) | (0.52) | |
share | 5.443 ** | 1.901 | 8.192 * | 1.326 |
(2.02) | (0.81) | (1.82) | (0.57) | |
land | 0.001 | |||
(0.45) | ||||
fertilizer | −0.007 | |||
(−0.14) | ||||
labor | −0.018 | |||
(−0.71) | ||||
machinery | −0.012 ** | |||
(−2.51) | ||||
Constant | −137.493 *** | −209.977 *** | −73.755 | −188.414 *** |
(−3.23) | (−3.66) | (−0.47) | (−2.94) | |
Year Fe | YES | YES | YES | YES |
Observations | 106 | 105 | 36 | 76 |
R-squared | 0.195 | 0.198 | 0.398 | 0.155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; You, J.; Wang, R.; Deng, H. Agricultural Production Optimization and Marginal Product Response to Climate Change. Agriculture 2022, 12, 1403. https://doi.org/10.3390/agriculture12091403
Liu D, You J, Wang R, Deng H. Agricultural Production Optimization and Marginal Product Response to Climate Change. Agriculture. 2022; 12(9):1403. https://doi.org/10.3390/agriculture12091403
Chicago/Turabian StyleLiu, Dan, Jia You, Rongbo Wang, and Haiyan Deng. 2022. "Agricultural Production Optimization and Marginal Product Response to Climate Change" Agriculture 12, no. 9: 1403. https://doi.org/10.3390/agriculture12091403
APA StyleLiu, D., You, J., Wang, R., & Deng, H. (2022). Agricultural Production Optimization and Marginal Product Response to Climate Change. Agriculture, 12(9), 1403. https://doi.org/10.3390/agriculture12091403