Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Preparation of Calcium Lignosulfonate (Ca-LIGN) Solution and Applying the Salt Treatments
2.3. Growth Parameters
2.4. Plant Pigment Content Determination
2.5. Relative Water Content (RWC)
2.6. Electrolyte Leakage Rate (ELR)
2.7. Determination of Peroxidase Activity (POD)
2.8. Na+ and K+ Concentrations
2.9. Post-Harvest Measurements
2.10. Crude Protein Content
2.11. Statistical Analysis
3. Results
3.1. Effect of the Treatments on Plant Growth and Biomass
3.2. Relative Water Content (RWC)
3.3. Electrolyte Leakage Rate (ELR)
3.4. Peroxidase Enzyme Activity (POD)
3.5. Different Photosynthetic Pigments
3.6. Na+ and K+ Concentrations
3.7. Post-Harvest Characteristics
3.8. Grain Protein Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelaal, K.A.; Mazrou, Y.S.; Hafez, Y.M. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants 2020, 9, 733. [Google Scholar] [CrossRef]
- El-Shawa, G.M.R.; Rashwan, E.M.; Abdelaal, K.A.A. Mitigating salt stress effects by exogenous application of proline and yeast extract on morphophysiological, biochemical and anatomical characters of calendula plants. Sci. J. Flowers Ornam. Plants 2020, 7, 461–482. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A.; EL-Maghraby, L.M.; Elansary, H.; Hafez, Y.M.; Ibrahim, E.I.; El-Banna, M.; El-Esawi, M.; Elkelish, A. Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy 2020, 10, 26. [Google Scholar] [CrossRef]
- El-Banna, M.F.; Abdelaal, K.A.A. Response of Strawberry Plants Grown in the Hydroponic System to Pretreatment with H2O2 before Exposure to Salinity Stress. J. Plant Prot. Mansoura Univ. 2018, 9, 989–1001. [Google Scholar] [CrossRef]
- Shen, Q.; Fu, L.; Dai, F.; Jiang, L.; Zhang, G.; Wu, D. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genom. 2016, 17, 889. [Google Scholar] [CrossRef]
- Akhilesh, K.; Singh, S.; Gaurav, A.K.; Srivastava, S. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef]
- El Nahhas, N.; AlKahtani, M.; Abdelaal, K.A.A.; Al Husnain, L.; AlGwaiz, H.; Hafez, Y.M.; Attia, K.; El-Esawi, M.; Ibrahim, M.; Elkelish, A. Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiol. Biochem. 2021, 166, 807–817. [Google Scholar] [CrossRef]
- Shen, Q.; Fu, L.; Su, T.; Ye, L.; Huang, L.; Kuang, L.; Wu, L.; Wu, D.; Chen, Z.H.; Zhang, G. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA41[OPEN]. Plant Physiol. 2020, 183, 1650–1662. [Google Scholar] [CrossRef]
- Elsawy, H.I.A.; Mekawy, A.M.; Elhity, M.A.; Abdel-dayem, S.M.; Abdelaziz, M.N.; Assaha, D.V.M.; Ueda, A.; Saneoka, H. Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiol. Biochem. 2018, 127, 425–435. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, B.; Tobiasz-Salach, R.; Mazurek, M. Physiological and Epigenetic Reaction of Barley (Hordeum vulgare L.) to the Foliar Application of Silicon under Soil Salinity Conditions. Int. J. Mol. Sci. 2022, 23, 1149. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.R.M.; Ashoub, A.; Hussein, B.A.; Brüggemann, W.; Hussein, E.H.A.; Tawfik, M.S. Physiological and molecular evaluation of ten Egyptian barley cultivars under salt stress conditions. J. Crop Sci. Biotechnol. 2021, 20, 9669–9681. [Google Scholar] [CrossRef]
- Abdelaal, K.; Mazrou, Y.; Hafez, Y. Effect of slicon and carrot extract on morphophysiological characters of pea (Pisum sativum L.) under salinity stress conditions. Fresenius Environ. Bull. 2022, 31, 608–615. [Google Scholar]
- Alnusairi, G.S.H.; Mazrou, Y.S.A.; Qari, S.H.; Elkelish, A.A.; Soliman, M.H.; Eweis, M.; Abdelaal, K.; El-Samad, G.A.; Ibrahim, M.F.M.; ElNahhas, N. Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. Plants 2021, 10, 1693. [Google Scholar] [CrossRef]
- El-Flaah, R.F.; El-Said, R.A.R.; Nassar, M.A.; Hassan, M.; Abdelaal, K.A.A. Effect of rhizobium, nano silica and ascorbic acid on morpho-physiological characters and gene expression of POX and PPO in faba bean (Vicia faba L.) Under salinity stress conditions. Fresenius Environ. Bull. 2021, 30, 5751–5764. [Google Scholar]
- Helaly, M.N.; Mohammed, Z.; El-Shaeery, N.I.; Abdelaal, K.A.; Nofal, I.E. Cucumber grafting onto pumpkin can represent an interesting tool to minimize salinity stress. Physiological and anatomical studies. Middle East J. Agric. Res. 2017, 6, 953–975. [Google Scholar]
- Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell. Dev. Biol. Plant 2008, 44, 373–383. [Google Scholar] [CrossRef]
- Hafez, Y.M.; Attia, K.A.; Alamery, S.; Ghazy, A.; Al-Dosse, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K.A.A. Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A.; Attia, K.A.; Alamery, S.F.; El-Afry, M.M.; Ghazy, A.I.; Tantawy, D.S.; Al-Doss, A.A.; El-Shawy, E.-S.E.; Abu-Elsaoud, A.M.; Hafez, Y.M. Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. Sustainability 2020, 12, 1736. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A.; EL-Shawy, E.A.; Hafez, Y.M.; Abdel-Dayem, S.M.; Chidya, R.C.G.; Saneoka, H.; EL Sabagh, A. Nano-Silver and non-traditional compounds mitigate the adverse effects of net blotch disease of barley in correlation with up-regulation of antioxidant enzymes. Pak. J. Bot. 2020, 52, 1065–1072. [Google Scholar] [CrossRef]
- El-Nashaar, F.; Hafez, Y.M.; Abdelaal, K.A.A.; Abdelfatah, A.; Badr, M.; El-Kady, S.; Yousef, A. Assessment of host reaction and yield losses of commercial barley cultivars to Drechslera teres the causal agent of net blotch disease in Egypt. Fresenius Environ. Bull. 2020, 29, 2371–2377. [Google Scholar]
- Abdelaal, K.A.; Hafez, Y.M.; El-Afry, M.M.; Tantawy, D.S.; Alshaal, T. Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity and productivity of barley (Hordeum vulgare L.) under water deficit stress. Environ. Sci. Pollut. Res. 2018, 25, 30199–30211. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Agriculture Overcoming Water Challenges in Agriculture; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Kanbar, A.; El drussi, I. Effect of Salinity Stress on Germination and Seedling Growth of Barley (Hordeum vulgare L.) Varieties. Adv. Environ. Biol. 2014, 244–248. Available online: https://link.gale.com/apps/doc/A375184626/AONE?u=anon~ed580df7&sid=googleScholar&xid=8bd31daa (accessed on 9 September 2022).
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochem. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- El- Wakeel, S.; Abdel-Azeem, A.; Mostafa, E. Assessment of salinity stress tolerance in some barley genotypes. Alex. J. Agric. Sci. 2019, 64, 195–206. [Google Scholar]
- Maršálová, L.; Vítámvás, P.; Hynek, R.; Prášil, I.T.; Kosová, K. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Front. Plant Sci. 2016, 7, 1154. [Google Scholar] [CrossRef]
- Docquier, S.; Kevers, C.; Lambé, P.; Gaspar, T.; Dommes, J. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting. Plant Cell Tissue Organ Cult. 2007, 90, 285–291. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Gupta, S.; Manoj, G.; Kulkarni, J.; White, F.; Wendy, A.; Stirk, H.; Papenfus, B.; Karel, D.; Vince, Ö.; Jeffrey, N.; et al. Chapter 1—Categories of Various Plant Biostimulants—Mode of Application and Shelf-Life, Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: Cambridge, MA, USA, 2021; pp. 1–60. ISBN 9780128230480. [Google Scholar]
- Desoky, E.S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.M.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.M.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggi, A. The Role of Biostimulants and Bioeffectors as Alleviators of Abiotic Stress in Crop Plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Gul, S.; Yanni, S.F.; Whalen, J.K. Lignin controls on soil ecosystem services: Implications for biotechnological advances. Biochem. Res. Trends Nova Sci. Publ. 2014, 978, 375–416. [Google Scholar]
- Ertani, A.; Nardi, S.; Francioso, O.; Pizzeghello, D.; Tinti, A. Metabolite-Targeted Analysis and Physiological Traits of Zea mays L. in Response to Application of a Products for Their Evaluation as Potential Biostimulants. Agronomy 2019, 9, 445. [Google Scholar] [CrossRef]
- Kok, A.D.; Wan, W.M.A.N.; Tang, C.N. Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Sci. Rep. 2021, 11, 13226. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef]
- Gonzalez, L.; Gonzalez-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar]
- Murray, B.Y.M.B.; Cape, J.N.; Fowler, D. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol. 1989, 113, 307–311. [Google Scholar] [CrossRef]
- Takagi, H.; Yamada, S.; Takagi, H.; Yamada, S. Soil Science and Plant Nutrition Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophytes under NaCl-stress condition Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophyte. Soil Sci. Plant Nutr. 2013, 59, 603–611. [Google Scholar] [CrossRef]
- Chance, B.; Meahly, A.C. Catalase Assay by Disappearance of Peroxide. Methods Enzymol. 1955, 2, 764–775. [Google Scholar]
- Rahman, A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci. 2016, 7, 609. [Google Scholar] [CrossRef]
- Sanful, R.E.; Darko, S. Utilization of soybean flour in the production of bread. Pak. J. Nutr. 2010, 9, 815–818. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tset. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Noreen, S.; Faiz, S.; Akhter, M.S.; Shah, K.H. Influence of foliar application of osmoprotectants to ameliorate salt stress in sunflower (Helianthus annuus L.). Sarhad J. Agric. 2019, 34, 1316–1325. [Google Scholar] [CrossRef]
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef]
- Fahad, S.; Bano, A. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot. 2012, 44, 1433–1438. [Google Scholar]
- Kang, F.; Lv, Q.l.; Liu, J.; Meng, Y.-S.; Wang, Z.-H.; Ren, X.-Q.; Hu, S.-W. Organic–inorganic calcium lignosulfonate compounds for soil acidity amelioration. Environ. Sci Pollut Res. 2022. [Google Scholar] [CrossRef]
- Hafez, Y.; Elkohby, W.; Mazrou, Y.S.A.; Ghazy, M.; Elgamal, A.; Abdelaal, K.A.A. Alleviating the detrimental impacts of salt stress on morpho-hpysiological and yield characters of rice plants (Oryza sativa L.) using actosol, Nano-Zn and Nano-Si. Fresenius Environ. Bull. 2020, 29, 6882–6897. [Google Scholar]
- Abdelaal, K.A.A.; El-Afry, M.; Metwaly, M.; Zidan, M.; Rashwan, E. Salt tolerance activation in faba bean plants using proline and salicylic acid associated with physio-biochemical and yield characters’ improvement. Fresenius Environ. Bull. 2021, 30, 3175–3186. [Google Scholar]
- AlKahtani, M.D.F.; Hafez, Y.M.; Attia, K.; Al-Ateeq, T.; Ali, M.A.M.; Hasanuzzaman, M.; Abdelaal, K.A.A. Bacillus thuringiensis and Silicon Modulate Antioxidant Metabolism and Improve the Physiological Traits to Confer Salt Tolerance in Lettuce. Plants 2021, 10, 1025. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2019, 86, 109–117. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Liu, J.; Hou, H.; Zhao, L.; Sun, Z.; Li, H. Protective Effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd. Sci. Total Environ. 2020, 710, 136230. [Google Scholar] [CrossRef] [PubMed]
- Torun, H. Arbuscular Mycorrhizal Fungi and K-Humate Combined as Biostimulants: Changes in Antioxidant Defense System and Radical Scavenging Capacity in Elaeagnus angustifolia. J. Soil Sci. Plant Nutr. 2020, 20, 2379–2393. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Mekawy, A.M.; Ueda, A.; Saneoka, H. Erratum: Salinity-induced expression of HKT may be crucial for Na+ exclusion in the leaf blade of huckleberry (Solanum scabrum Mill.), but not of eggplant (Solanum melongena L.). Biochem. Biophys. Res. Commun. 2015, 463, 1342. [Google Scholar] [CrossRef]
- Landlin, G.; Soundarya, M.K.; Bhuvaneshwari, S. Behavior of Lignosulphonate Amended Expansive Soil. In Sustainable Practices and Innovations in Civil Engineering. Lecture Notes in Civil Engineering; Ramanagopal, S., Gali, M., Venkataraman, K., Eds.; Springer: Singapore, 2021; Volume 79, pp. 151–162. [Google Scholar] [CrossRef]
- Dave, A.; Agarwal, P.; Agarwal, P.K. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 2022, 12, 51. [Google Scholar] [CrossRef]
- Ikkonen, E.N.; Jurkevich, M.G. Effect of lignosulfonate application to sandy soil on plant nutrition and physiological traits. IOP Conf. Ser. Earth Environ. Sci. 2021, 862, 012079. [Google Scholar] [CrossRef]
Year | Months | Temperature (°C) | Relative Humidity (RH%) | Wind Velocity (km/24 h) | ||
---|---|---|---|---|---|---|
Min. | Max. | 7:30 a.m. | 13:30 p.m. | |||
2019 | November | 25.1 | 27.4 | 82.8 | 48.3 | 36.6 |
December | 13.4 | 21.4 | 86.9 | 58.9 | 38.5 | |
2020 | January | 11.8 | 18.4 | 86.7 | 62.7 | 30.0 |
February | 12.7 | 20.4 | 84.6 | 56.5 | 51.0 | |
March | 15.6 | 22.6 | 81.1 | 53.9 | 80.1 | |
April | 18.9 | 26.0 | 80.0 | 45.1 | 98.8 | |
May | 23.8 | 31.0 | 68.9 | 38.4 | 14.4 | |
November | 17.5 | 25.0 | 80.7 | 56.8 | 46.9 | |
December | 13.7 | 22.9 | 87.7 | 55.7 | 44.9 | |
2021 | January | 13.5 | 21.0 | 86.7 | 59.5 | 39.2 |
February | 12.5 | 21.5 | 87.5 | 55.9 | 58.3 | |
March | 16.5 | 23.8 | 83.6 | 55.2 | 81.5 | |
April | 19.5 | 27.6 | 78.6 | 42.0 | 95.9 | |
May | 25.1 | 32.1 | 65.3 | 33.8 | 12.4 |
Characteristics Treatments | Shoot Length (cm) | Root Length (cm) | Shoot Dry Weight (gm) | Root Dry Weight (gm) | Na+ Concentration (mg gm−1 DW) | K+ Concentration (mg gm−1 DW) | POD Enzyme Activity in (µmol gm−1 min−1) | |||
---|---|---|---|---|---|---|---|---|---|---|
Leaf | Root | Leaf | Root | Leaf | Root | |||||
Seasons | ||||||||||
First (2019/2020) | 40.68 | 42.09 | 3.86 | 3.13 | 67.18 | 43.65 | 21.21 | 16.04 | 8.95 | 7.85 |
Second (2020/2021) | 42.90 | 43.86 | 4.67 | 4.95 | 68.23 | 44.65 | 22.31 | 17.00 | 9.70 | 8.51 |
F. Test | * | N.S | * | * | N.S | N.S | N.S | N.S | ** | ** |
Cultivars | ||||||||||
Giza133 | 41.67 | 42.30 | 3.24 | 3.72 | 54.24 | 33.82 | 23.42 | 18.27 | 12.33 | 7.20 |
Giza132 | 41.90 | 43.65 | 2.29 | 2.36 | 80.13 | 53.49 | 19.01 | 13.80 | 6.32 | 9.15 |
F. Test | N.S | N.S | ** | ** | ** | ** | ** | ** | ** | ** |
Treatments | ||||||||||
Control | 41.19 | 48.06 | 2.56 | 2.94 | 0.70 | 0.25 | 35.96 | 23.36 | 4.10 | 4.01 |
100 mM NaCl + Ca-LIGNO | 47.25 | 47.38 | 3.81 | 4.77 | 36.91 | 13.71 | 29.75 | 20.90 | 2.84 | 6.23 |
200 mM NaCl + Ca-LIGNO | 44.28 | 42.10 | 3.76 | 3.72 | 43.94 | 35.23 | 27.37 | 18.67 | 3.82 | 7.31 |
300 mM NaCl + Ca-LIGNO | 44.09 | 44.44 | 2.75 | 2.45 | 58.71 | 43.70 | 21.37 | 14.99 | 9.41 | 9.93 |
100 mM NaCl | 40.60 | 41.39 | 2.34 | 2.75 | 62.64 | 35.75 | 14.10 | 14.16 | 11.37 | 6.68 |
200 mM NaCl | 38.09 | 37.21 | 2.25 | 2.44 | 79.02 | 61.51 | 11.13 | 11.70 | 13.82 | 6.83 |
300 mM NaCl | 37.00 | 40.25 | 1.90 | 2.23 | 188.36 | 115.42 | 8.83 | 8.50 | 19.93 | 16.23 |
F. Test | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
L.S.D | 2.782 | 6.033 | 0.2334 | 0.4356 | 12.02 | 17.55 | 6.343 | 2.927 | 3.367 | 3.778 |
Characteristics Treatments | Relative Water Content (RWC) (%) | Electrolyte Leakage Rate (ELR) (%) | Leaf Area (LA) (cm2 Plant−1) | Total Leaf Area (TLA) (cm2 Plant−1) | Chlorophyll a (Chll a) (µg mg−1 FW) | Chlorophyll b (Chll b) (µg mg−1 FW) | Total Chlorophyll Content (µg mg−1 FW) | Total Carotenoids Content (µg mg−1 FW) | |
---|---|---|---|---|---|---|---|---|---|
Leaf | Root | ||||||||
Seasons | |||||||||
First (2019/2020) | 92.11 | 78.49 | 78.25 | 30.08 | 270.75 | 1.20 | 1.22 | 1.42 | 1.05 |
Second (2020/2021) | 91.11 | 77.46 | 76.43 | 32.22 | 264.07 | 2.41 | 2.42 | 2.62 | 2.26 |
F. Test | N.S | N.S | N.S | * | N.S | ** | ** | ** | ** |
Cultivars | |||||||||
Giza133 | 92.86 | 61.28 | 85.61 | 32.16 | 290.61 | 2.29 | 2.33 | 2.53 | 2.14 |
Giza132 | 90.36 | 94.66 | 70.07 | 30.14 | 250.21 | 0.32 | 0.31 | 0.51 | 0.18 |
F. Test | * | ** | ** | ** | N.S | ** | ** | ** | ** |
Treatment | |||||||||
Control | 98.17 | 46.34 | 80.29 | 30.76 | 267.59 | 1.53 | 1.51 | 1.71 | 1.39 |
100 mM NaCl + Ca-LIGNO | 97.65 | 27.02 | 57.91 | 40.94 | 326.08 | 2.30 | 2.35 | 2.56 | 2.16 |
200 mM NaCl + Ca-LIGNO | 96.86 | 48.63 | 76.22 | 35.92 | 224.47 | 1.99 | 2.01 | 2.20 | 1.84 |
300 mM NaCl + Ca-LIGNO | 92.48 | 72.79 | 73.09 | 31.35 | 379.01 | 1.50 | 1.52 | 1.71 | 1.35 |
100 mM NaCl | 87.21 | 100.99 | 75.54 | 26.77 | 200.03 | 0.76 | 0.77 | 0.98 | 0.61 |
200 mM NaCl | 88.58 | 113.16 | 77.92 | 28.50 | 219.85 | 0.55 | 0.59 | 0.79 | 0.41 |
300 mM NaCl | 80.33 | 136.88 | 103.90 | 23.80 | 275.85 | 0.49 | 0.50 | 0.69 | 0.36 |
F. Test | ** | ** | ** | ** | ** | ** | ** | ** | ** |
L.S.D | 4.171 | 11.45 | 10.50 | 2.867 | 93.89 | 0.0223 | 0.0223 | 0.0224 | 0.0315 |
Characteristics Treatments | Plant Height (cm) | Spike Length (cm) | No. Grains Spike−1 | Grain Yield Pot−1 (gm) | 1000-Grain Weight (gm) | Grain Protein Content (%) |
---|---|---|---|---|---|---|
Seasons | ||||||
First (2019/2020) | 48.39 | 6.70 | 7.73 | 15.53 | 29.97 | 10.78 |
Second (2020/2021) | 52.16 | 8.68 | 9.28 | 18.08 | 31.94 | 10.87 |
F. Test | * | * | * | * | * | * |
Cultivars | ||||||
Giza133 | 51.82 | 8.19 | 9.81 | 18.35 | 33.13 | 11.70 |
Giza132 | 48.73 | 9.18 | 10.19 | 13.26 | 24.77 | 10.59 |
F. Test | ** | ** | N.S | ** | ** | * |
Treatments | ||||||
Control | 56.42 | 9.11 | 10.05 | 15.41 | 37.3 | 9.38 |
100 mM NaCl + Ca-LIGNO | 59.96 | 9.91 | 10.28 | 29.15 | 44.3 | 11.20 |
200 mM NaCl + Ca-LIGNO | 46.57 | 9.13 | 10.69 | 17.64 | 29.7 | 11.90 |
300 mM NaCl + Ca-LIGNO | 47.26 | 7.57 | 8.83 | 13.30 | 22.1 | 13.06 |
100 mM NaCl | 51.92 | 8.49 | 10.09 | 12.96 | 24.3 | 9.54 |
200 mM NaCl | 48.72 | 8.66 | 10.35 | 12.19 | 21.5 | 10.08 |
300 mM NaCl | 41.07 | 7.93 | 9.73 | 9.98 | 23.6 | 10.67 |
F. Test | ** | ** | ** | ** | ** | ** |
L.S.D | 2.924 | 0.3623 | 0.5351 | 2.365 | 4.144 | 0.224 |
Cultivars | Treatments | Chlorophyll a (Chll a) (µg mg−1 FW) | Chlorophyll b (Chll b) (µg mg−1 FW) | Total Chlorophyll Content (µg mg−1 FW) | Total Carotenoids Content (µg mg−1 FW) |
---|---|---|---|---|---|
Giza133 | Control | 2.71 ± 0.00 | 2.67 ± 0.01 | 2.88 ± 0.01 | 2.56 ± 0.00 |
100 mM NaCl + Ca-LIGNO | 4.20 ± 0.00 | 4.28 ± 0.01 | 4.49 ± 0.01 | 4.05 ± 0.00 | |
200 mM NaCl + Ca-LIGNO | 3.70 ± 0.00 | 3.81 ± 0.00 | 4.01 ± 0.00 | 3.54 ± 0.00 | |
300 mM NaCl + Ca-LIGNO | 2.70 ± 0.00 | 2.74 ± 0.00 | 2.94 ± 0.01 | 2.55 ± 0.00 | |
100 mM NaCl | 1.21 ± 0.00 | 1.25 ± 0.01 | 1.47 ± 0.01 | 1.06 ± 0.00 | |
200 mM NaCl | 0.80 ± 0.00 | 0.86 ± 0.01 | 1.06 ± 0.01 | 0.66 ± 0.00 | |
300 mM NaCl | 0.70 ± 0.00 | 0.72 ± 0.00 | 0.92 ± 0.00 | 0.56 ± 0.00 | |
Giza132 | Control | 0.36 ± 0.00 | 0.34 ± 0.01 | 0.55 ± 0.01 | 0.21 ± 0.00 |
100 mM NaCl + Ca-LIGNO | 0.40 ± 0.00 | 0.42 ± 0.01 | 0.63 ± 0.02 | 0.26 ± 0.00 | |
200 mM NaCl + Ca-LIGNO | 0.29 ± 0.00 | 0.21 ± 0.00 | 0.40 ± 0.02 | 0.15 ± 0.00 | |
300 mM NaCl + Ca-LIGNO | 0.29 ± 0.00 | 0.29 ± 0.00 | 0.48 ± 0.00 | 0.16 ± 0.00 | |
100 mM NaCl | 0.31 ± 0.00 | 0.29 ± 0.01 | 0.49 ± 0.01 | 0.16 ± 0.00 | |
200 mM NaCl | 0.30 ± 0.00 | 0.32 ± 0.02 | 0.52 ± 0.00 | 0.16 ± 0.00 | |
300 mM NaCl | 0.29 ± 0.00 | 0.28 ± 0.02 | 0.47 ± 0.02 | 0.16 ± 0.00 | |
F. Test | ** | ** | ** | ** | |
L.S.D | 0.0314 | 0.0316 | 0.0315 | 0.0445 |
Cultivars | Treatments | Plant Height (cm) | Spike Lengths (cm) | No. Grains Spike−1 | 1000-Grain Weight (gm) | Grain Yield Pot−1 (gm) | Grain Protein Content (%) |
---|---|---|---|---|---|---|---|
Giza133 | Control | 55.42 ± 2.05 | 8.46 ± 0.15 | 10.20 ± 0.25 | 42.50 ± 1.79 | 14.65 ± 0.51 | 9.48 ± 0.01 |
100 mM NaCl + Ca-LIGNO | 60.67 ± 1.77 | 9.88 ± 0.12 | 8.95 ± 0.09 | 50.00 ± 2.18 | 35.92 ± 2.15 | 11.36 ± 0.01 | |
200 mM NaCl + Ca-LIGNO | 48.48 ± 0.97 | 8.80 ± 0.14 | 10.40 ± 0.19 | 33.38 ± 0.26 | 21.83 ± 1.18 | 12.13 ± 0.01 | |
300 mM NaCl + Ca-LIGNO | 51.17 ± 0.75 | 7.15 ± 0.12 | 8.40 ± 0.14 | 23.38 ± 1.17 | 15.75 ± 0.77 | 13.82 ± 0.01 | |
100 mM NaCl | 52.29 ± 0.46 | 7.61 ± 0.02 | 10.18 ± 0.27 | 26.68 ± 3.74 | 13.84 ± 0.08 | 9.65 ± 0.04 | |
200 mM NaCl | 51.55 ± 0.53 | 8.13 ± 0.07 | 10.88 ± 0.17 | 26.13 ± 3.50 | 14.18 ± 0.33 | 10.23 ± 0.02 | |
300 mM NaCl | 43.20 ± 0.68 | 7.33 ± 0.26 | 9.68 ± 0.06 | 29.86 ± 4.25 | 12.29 ± 0.44 | 10.88 ± 0.02 | |
Giza132 | Control | 57.42 ± 1.40 | 9.77 ± 0.29 | 9.90 ± 0.30 | 32.00 ± 0.83 | 16.18 ± 0.67 | 9.27 ± 0.03 |
100 mM NaCl + Ca-LIGNO | 59.25 ± 0.44 | 9.95 ± 0.11 | 11.60 ± 0.15 | 38.50 ± 1.15 | 22.38 ± 1.04 | 11.04 ± 0.03 | |
200 mM NaCl + Ca-LIGNO | 44.67 ± 0.61 | 9.45 ± 0.15 | 10.98 ± 0.21 | 26.00 ± 0.75 | 13.45 ± 0.21 | 11.66 ± 0.04 | |
300 mM NaCl + Ca-LIGNO | 43.35 ± 0.38 | 8.00 ± 0.23 | 9.25 ± 0.35 | 20.75 ± 0.63 | 10.85 ± 0.99 | 12.30 ± 0.02 | |
100 mM NaCl | 51.55 ± 1.20 | 9.38 ± 0.16 | 10.00 ± 0.02 | 22.00 ± 0.48 | 12.08 ± 0.10 | 9.44 ± 0.02 | |
200 mM NaCl | 45.89 ± 1.03 | 9.20 ± 0.05 | 9.83 ± 0.28 | 16.88 ± 0.12 | 10.20 ± 0.15 | 9.95 ± 0.62 | |
300 mM NaCl | 38.95 ± 0.40 | 8.54 ± 0.13 | 9.78 ± 0.21 | 17.28 ± 0.97 | 7.68 ± 0.42 | 10.46 ± 0.02 | |
F. Test | * | ** | ** | * | ** | ** | |
L.S.D | 4.135 | 0.5124 | 0.7568 | 5.861 | 3.345 | 0.3164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsawy, H.I.A.; Alharbi, K.; Mohamed, A.M.M.; Ueda, A.; AlKahtani, M.; AlHusnain, L.; Attia, K.A.; Abdelaal, K.; Shahein, A.M.E.A. Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.). Agriculture 2022, 12, 1459. https://doi.org/10.3390/agriculture12091459
Elsawy HIA, Alharbi K, Mohamed AMM, Ueda A, AlKahtani M, AlHusnain L, Attia KA, Abdelaal K, Shahein AMEA. Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.). Agriculture. 2022; 12(9):1459. https://doi.org/10.3390/agriculture12091459
Chicago/Turabian StyleElsawy, Hayam I. A., Khadiga Alharbi, Amany M. M. Mohamed, Akihiro Ueda, Muneera AlKahtani, Latifa AlHusnain, Kotb A. Attia, Khaled Abdelaal, and Alaa M. E. A. Shahein. 2022. "Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.)" Agriculture 12, no. 9: 1459. https://doi.org/10.3390/agriculture12091459
APA StyleElsawy, H. I. A., Alharbi, K., Mohamed, A. M. M., Ueda, A., AlKahtani, M., AlHusnain, L., Attia, K. A., Abdelaal, K., & Shahein, A. M. E. A. (2022). Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.). Agriculture, 12(9), 1459. https://doi.org/10.3390/agriculture12091459