Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Description
2.3. Data Acquisition
2.3.1. Yield and Quality Parameters
2.3.2. Soil Moisture Contents and Temperature
2.3.3. Statistical Analysis
3. Results
3.1. Effect of Fertilizer Rates and Mulch Types on Physiological Parameters of Cotton
3.2. Effect of Fertilizer Rates and Mulch Types on Quality Parameters of Cotton
3.3. Effect of Fertilizer Rates and Mulch Types on Yield Parameters of Cotton
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M. World Cotton Production and Consumption: An Overview. In Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Ahmad, D.I.; Mohsin, H.M.; Dar, N.A.; Malik, M.S.; Hasnain, Z. Pakistan Economic Survey 2021-22; Govt. of Pakistan: Islamabad, Pakistan, 2022; Volume 1999. [Google Scholar]
- Rana, A.W.; Ejaz, A.; Shikoh, S.H. Cotton Crop: A Situational Analysis of Pakistan; PACE Policy Working Paper April 2020; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Constable, G.A.; Bange, M.P. The Yield Potential of Cotton (Gossypium hirsutum L.). Field Crop. Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Heckel, D.G. The Essential and Enigmatic Role of Abc Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. Insects 2021, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Yasmeen, A.; Ahmad, S.; Hussain, N.; Afzal, M.N.; Hasanuzzaman, M. Shedding of Fruiting Structures in Cotton: Factors, Compensation and Prevention. Trop. Subtrop. Agroecosystems 2017, 20, 251–262. [Google Scholar]
- Tariq, M.; Afzal, M.N.; Muhammad, D.; Ahmad, S.; Shahzad, A.N.; Kiran, A.; Wakeel, A. Relationship of Tissue Potassium Content with Yield and Fiber Quality Components of Bt Cotton as Influenced by Potassium Application Methods. Field Crops Res. 2018, 229, 37–43. [Google Scholar] [CrossRef]
- Dhakal, C.; Lange, K.; Parajulee, M.N.; Segarra, E. Dynamic Optimization of Nitrogen in Plateau Cotton Yield Functions with Nitrogen Carryover Considerations. J. Agric. Appl. Econ. 2019, 51, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Liu, H.; Li, X.; Li, L.; Anwar, S. Promoting the Production of Salinized Cotton Field by Optimizing Water and Nitrogen Use Efficiency under Drip Irrigation. J. Arid. Land. 2021, 13, 699–716. [Google Scholar] [CrossRef]
- Wu, B.; Zuo, W.; Yang, P.; Zhang, W. Optimal Water and Nitrogen Management Increases Cotton Yield through Improving Leaf Number and Canopy Light Environment. Field Crops Res 2023, 290, 108745. [Google Scholar] [CrossRef]
- Schwenke, G.; Baird, J.; Nachimuthu, G.; Macdonald, B.; McPherson, A.; Mercer, C.; Hundt, A. Dressed for Success. Are Crop N Uptake, N Loss and Lint Yield of Irrigated Cotton Affected by How in-Crop N Fertiliser Is Applied? Field Crop. Res. 2022, 287, 108659. [Google Scholar] [CrossRef]
- Koudahe, K.; Sheshukov, A.Y.; Aguilar, J.; Djaman, K. Irrigation-Water Management and Productivity of Cotton: A Review. Sustainability 2021, 13, 10070. [Google Scholar] [CrossRef]
- Abdalova, G.N.; Eshonkulov, J.S.; Sulaymonov, S.O.; Abdullayeva, F.M. Improvement of Cotton Nutrition Procedure and Irrigation Technologies. ACADEMICIA Int. Multidiscip. Res. J. 2021, 11, 720–723. [Google Scholar] [CrossRef]
- Chathuranika, I.; Khaniya, B.; Neupane, K.; Rustamjonovich, K.M.; Rathnayake, U. Implementation of Water-Saving Agro-Technologies and Irrigation Methods in Agriculture of Uzbekistan on a Large Scale as an Urgent Issue. Sustain Water Resour Manag 2022, 8, 155. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, A.; Liu, F.; Niu, W.; Siddique, K.H.M. Effect of Film Mulching on Crop Yield and Water Use Efficiency in Drip Irrigation Systems: A Meta-Analysis. Soil Tillage Res 2022, 221, 105392. [Google Scholar] [CrossRef]
- Rashid, M.A.; Zhang, X.; Andersen, M.N.; Olesen, J.E. Can Mulching of Maize Straw Complement Deficit Irrigation to Improve Water Use Efficiency and Productivity of Winter Wheat in North China Plain? Agric. Water Manag. 2019, 213, 1–11. [Google Scholar] [CrossRef]
- Allanov, K.; Sheraliev, K.; Ulugov, C.; Ahmurzayev, S.; Sottorov, O.; Khaitov, B.; Park, K.W. Integrated Effects of Mulching Treatment and Nitrogen Fertilization on Cotton Performance under Dryland Agriculture. Commun. Soil Sci. Plant Anal. 2019, 50, 1907–1918. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential Agricultural and Environmental Benefits of Mulches—A Review. Bull. Natl. Res. Cent 2020, 44, 75. [Google Scholar] [CrossRef]
- Saeed, M.; Maqbool, A.; Ashraf, M.A.; Arshad, M.; Mehmood, K.; Usman, M.; Farid, M.A. Competency of Groundwater Recharge of Irrigated Cotton Field Subjacent to Sowing Methods, Plastic Mulch, Water Productivity, and Yield under Climate Change. Environ. Sci. Pollut. Res. 2022, 29, 17757–17771. [Google Scholar] [CrossRef]
- Khosravi, A.; Moosavi, S.G. Effect of Irrigation, Foliar Application of Methanol and Plant Density on Morphophysiology Traits, Yield and Yield Components of Cotton (Gossypium hirsutum L.). Iran. J. Cotton Res. 2019, 7, 33–56. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Sundaram, S.P.; Sa, T. A New Insight into Foliar Applied Methanol Influencing Phylloplane Methylotrophic Dynamics and Growth Promotion of Cotton (Gossypium hirsutum L.) and Sugarcane (Saccharum officinarum L.). Environ. Exp. Bot. 2006, 57, 168–176. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part 1; Klute, A., Ed.; SSSA Book Series 5.1; SSSA and ASA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Extraction of Photosynthetic Tissues: Chlorophylls and Carotenoids. In Handbook of Food Analytical Chemistry; Wiley Publishing: Hoboken, NJ, USA, 2005; F4-3. [Google Scholar]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Zeitschrift für Analytische Chemie. 1983, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Mason, J.L. Flame Photometric Determination of Potassium in Unashed Plant Leaves. Anal. Chem. 1963, 35, 874–875. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk Density in Methods of Soil Analysis. Agronomy 1985, 9, 374–390. [Google Scholar]
- Sui, N.; Zhou, Z.; Yu, C.; Liu, R.; Yang, C.; Zhang, F.; Song, G.; Meng, Y. Yield and Potassium Use Efficiency of Cotton with Wheat Straw Incorporation and Potassium Fertilization on Soils with Various Conditions in the Wheat-Cotton Rotation System. Field Crops Res 2015, 172, 132–144. [Google Scholar] [CrossRef]
- SK, P.G.P.; Debnath, S.; Maitra, S. Mulching: Materials, Advantages and Crop Production. In Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Tanmoy, S., Eds.; New Delhi Publishers: New Delhi, India, 2020; pp. 55–66. [Google Scholar]
- Jiménez, M.N.; Pinto, J.R.; Ripoll, M.A.; Sánchez-Miranda, A.; Navarro, F.B. Impact of Straw and Rock-Fragment Mulches on Soil Moisture and Early Growth of Holm Oaks in a Semiarid Area. Catena 2017, 152, 198–206. [Google Scholar] [CrossRef]
- Ren, A.T.; Zhou, R.; Mo, F.; Liu, S.T.; Li, J.Y.; Chen, Y.; Zhao, L.; Xiong, Y.C. Soil Water Balance Dynamics under Plastic Mulching in Dryland Rainfed Agroecosystem across the Loess Plateau. Agric Ecosyst Env. 2021, 312, 107354. [Google Scholar] [CrossRef]
- Bojović, B.; Marković, A. Correlation between Nitrogen and Chlorophyll Content in Wheat (Triticum aestivum L.). Kragujev. J. Sci. 2009, 31, 69–74. [Google Scholar]
- Luo, Z.; Liu, H.; Li, W.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of Reduced Nitrogen Rate on Cotton Yield and Nitrogen Use Efficiency as Mediated by Application Mode or Plant Density. Field Crops Res 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Liang, Q.; Shi, X.; Li, N.; Shi, F.; Tian, Y.; Zhang, H.; Hao, X.; Luo, H. Fertilizer Reduction Combined with Organic Liquid Fertilizer Improved Canopy Structure and Function and Increased Cotton Yield. Agronomy 2022, 12, 1759. [Google Scholar] [CrossRef]
N (kg ha−1) | Mulch Type | Physiological Parameters | |||||
---|---|---|---|---|---|---|---|
Chl Contents (mg mL−1) | Nitrogen (mg kg−1) | Phosphorus (mg kg−1) | Potassium (mg kg−1) | Calcium (mg kg−1) | Magnesium (mg kg−1) | ||
0 | Control | 0.61 e | 1.42 d | 3.69 e | 129.0 d | 12.21 d | 6.53 d |
Chemical mulch | 0.68 e | 1.45 d | 3.77 e | 134.2 d | 12.28 d | 6.65 d | |
Natural mulch | 0.72 e | 1.46 d | 4.17 d | 147.7 c | 12.30 d | 6.69 d | |
70 | Control | 1.24 d | 2.72 c | 4.36 c | 153.7 c | 14.00 c | 7.35 c |
Chemical mulch | 1.40 cd | 2.78 c | 4.46 bc | 168.8 b | 14.05 c | 7.38 c | |
Natural mulch | 1.51 c | 2.80 c | 4.53 b | 171.0 b | 14.08 c | 7.50 c | |
140 | Control | 1.68 c | 2.90 b | 4.69 ab | 176.4 ab | 14.34 b | 8.29 b |
Chemical mulch | 1.65 c | 2.94 ab | 4.83 a | 182.7 a | 14.41 b | 8.33 b | |
Natural mulch | 1.94 b | 2.99 ab | 4.89 a | 187.5 a | 14.41 b | 8.45 b | |
210 | Control | 1.93 b | 3.01 a | 4.92 a | 190.7 a | 14.63 a | 8.67 a |
Chemical mulch | 2.12 a | 3.06 a | 4.96 a | 193.0 a | 14.70 a | 8.71 a | |
Natural mulch | 2.26 a | 3.08 a | 4.99 a | 196.2 a | 14.74 a | 8.78 a | |
LSD | 0.15 | 0.09 | 1.2 | 8.3 | 1.5 | 1.3 | |
CV | 2.01 | 2.12 | 3.9 | 5.1 | 4.5 | 4.3 |
N (kg ha−1) | Mulch type | Quality Parameters | |||||
---|---|---|---|---|---|---|---|
GOT (%) | F Length (mm) | F Strength (g tex−1) | F Fineness (µg inch−1) | F Uniformity (%) | F Elongation (%) | ||
0 | Control | 29.45 c | 24.68 c | 23.38 d | 3.90 d | 44.76 d | 10.13 c |
Chemical mulch | 30.01 c | 24.75 c | 23.63 d | 3.93 d | 45.14 d | 10.25 c | |
Natural mulch | 30.23 c | 24.97 c | 23.89 d | 3.96 d | 45.46 d | 10.29 c | |
70 | Control | 32.55 c | 28.89 b | 24.44 cd | 4.13 cd | 47.63 c | 12.66 b |
Chemical mulch | 33.95 c | 29.10 b | 24.90 c | 4.38 c | 48.40 c | 12.70 b | |
Natural mulch | 35.55 b | 29.20 b | 24.97 c | 4.44 bc | 48.74 c | 13.18 ab | |
140 | Control | 35.90 b | 29.39 b | 25.28 c | 4.69 b | 50.91 b | 13.05 ab |
Chemical mulch | 37.80 a | 29.67 a | 26.67 bc | 4.76 ab | 51.76 b | 13.09 ab | |
Natural mulch | 38.90 a | 30.09 a | 27.01 b | 5.07 a | 51.77 b | 13.25 a | |
210 | Control | 40.10 a | 30.30 a | 28.38 ab | 5.04 a | 53.38 a | 13.24 a |
Chemical mulch | 41.30 a | 30.57 a | 29.04 a | 5.09 a | 53.94 a | 13.34 a | |
Natural mulch | 41.40 a | 31.92 a | 30.79 a | 5.17 a | 54.09 a | 13.58 a | |
LSD | 0.7 | 1.2 | 0.4 | 0.3 | 0.90 | 0.53 | |
CV | 5.2 | 2.8 | 3.9 | 1.4 | 4.7 | 1.9 |
N(kg ha−1) | Mulch Type | Yield Parameters (t ha−1) | ||||
---|---|---|---|---|---|---|
Total YIELD | Biomass Yield | Economic Yield | Seed Yield | Lint Yield | ||
0 | Control | 4.5 d | 2.4 bc | 2.1 c | 1.4 c | 0.67 c |
Chemical mulch | 4.8 d | 2.5 b | 2.2 c | 1.5 c | 0.69 c | |
Natural mulch | 4.9 d | 2.5 b | 2.3 c | 1.6 c | 0.70 c | |
70 | Control | 5.4 c | 2.7 b | 2.7 c | 1.8 b | 0.95 c |
Chemical mulch | 5.6 c | 2.7 b | 2.9 bc | 1.9 b | 1.00 b | |
Natural mulch | 5.8 c | 2.8 b | 3.0 b | 2.0 b | 1.00 b | |
140 | Control | 6.6 b | 3.4 a | 3.2 b | 2.1 ab | 1.14 b |
Chemical mulch | 6.8 b | 3.5 a | 3.3 b | 2.2 a | 1.15 b | |
Natural mulch | 6.9 ab | 3.6 a | 3.3 b | 2.1 ab | 1.25 a | |
210 | Control | 7.3 a | 3.6 a | 3.7 ab | 2.3 a | 1.36 a |
Chemical mulch | 7.4 a | 3.6 a | 3.8 a | 2.4 a | 1.41 a | |
Natural mulch | 7.7 a | 3.7 a | 4.0 a | 2.5 a | 1.51 a | |
LSD | 0.4 | 0.3 | 0.4 | 0.3 | 0.2 | |
CV | 4.8 | 4.2 | 3.9 | 3.9 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, K.; Ilyas, A.; Ali, S.; Bibi, I.; Shakil, Q.; Farid, M.U.; Saqib, Z.A.; Habib, A.; HAKKI, E.E. Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton. Agriculture 2023, 13, 12. https://doi.org/10.3390/agriculture13010012
Hussain K, Ilyas A, Ali S, Bibi I, Shakil Q, Farid MU, Saqib ZA, Habib A, HAKKI EE. Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton. Agriculture. 2023; 13(1):12. https://doi.org/10.3390/agriculture13010012
Chicago/Turabian StyleHussain, Khalid, Ayesha Ilyas, Saqib Ali, Irshad Bibi, Qamar Shakil, Muhammad Usman Farid, Zulfiqar Ahmad Saqib, Adnan Habib, and Erdoğan Eşref HAKKI. 2023. "Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton" Agriculture 13, no. 1: 12. https://doi.org/10.3390/agriculture13010012
APA StyleHussain, K., Ilyas, A., Ali, S., Bibi, I., Shakil, Q., Farid, M. U., Saqib, Z. A., Habib, A., & HAKKI, E. E. (2023). Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton. Agriculture, 13(1), 12. https://doi.org/10.3390/agriculture13010012