Seasonal Population Dynamics and Harmfulness of Wheat Thrips in Agrocenoses of Grain Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Accounting for Adults of Wheat and Predatory Thrips
2.2. Accounting for Eggs, Larvae of Wheat Thrips
2.3. Accounting for Stages of Wheat Thrips Metamorphosis
2.4. Accounting for the Harmfulness of Wheat Thrips
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Tan, W.; Li, B.; Wen, L.; Lei, G. Habitat alteration facilitates the dominance of invasive species through disrupting niche partitioning in floodplain wetlands. Divers. Distrib. 2021, 27, 1861–1871. [Google Scholar] [CrossRef]
- Zhichkina, L.; Nosov, V.; Zhichkin, K.; Musina, O.; Meleshkina, L.; Artemova, E. Ecological aspects of seasonal dynamics of wheat thrips and trophic relationships in wheat agrocenoses. Smart Innov. Syst. Technol. 2022, 245, 125–135. [Google Scholar]
- Allesina, S.; Alonso, D.; Pascual, M. A general model for food web structure. Science 2008, 320, 658–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-C.; Cao, L.-J.; Sun, L.-N.; Gao, Y.-F.; Cao, H.-Q.; Ma, Z.-Z.; Ma, L.-J.; Shen, X.-J.; Wang, J.-X.; Gong, Y.-J.; et al. Variation in the toxicity of a novel meta-diamide insecticide, broflanilide, among thrips pest species and developmental stages. Pest Manag. Sci. 2022, 78, 5090–5096. [Google Scholar] [CrossRef] [PubMed]
- Chaisuekul, C.; Riley, D.G. Host plant, temperature, and photoperiod effects on ovipositional preference of Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 2005, 98, 2107–2113. [Google Scholar] [CrossRef]
- Zhichkin, K.A.; Nosov, V.V.; Zhichkina, L.N.; Krasil’nikova, E.A.; Kotar, O.K.; Shlenov, Y.D.; Korneva, G.V.; Terekhova, A.A.; Plyushchikov, V.G.; Avdotin, V.P.; et al. Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region. Agriculture 2022, 12, 1734. [Google Scholar] [CrossRef]
- Reitz, S.R.; Gao, Y.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasi on biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Bascompte, J. Structure and dynamics of ecological networks. Science 2010, 329, 765–766. [Google Scholar] [CrossRef] [Green Version]
- Zhichkin, K.; Nosov, V.; Zhichkina, L.; Łakomiak, A.; Pakhomova, T.; Terekhova, A. Biological bases of crop insurance with state support. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 022026. [Google Scholar] [CrossRef]
- Srinivasan, R.; Abney, M.R.; Lai, P.C.; Culbreath, A.K.; Tallury, S.; Leal-Bertioli, S. Resistance to thrips in peanut and implications for management of thrips and thrips-transmitted orthotospoviruses in peanut. Front. Plant Sci. 2018, 9, 1604. [Google Scholar] [CrossRef]
- Badenes-Pйrez, F.R.; Lypez-Pйrez, J.A. Resistance and susceptibility to powdery mildew, root-knot nematode, and western flower thrips in two types of winter cress (Brassicaceae). Crop Prot. 2018, 10, 41–47. [Google Scholar] [CrossRef]
- Beuzelin, J.M.; VanWeelden, M.T.; Soto-Adames, F.N.; Sandhu, H.S.; Davidson, R.W.; Baucum, L.; Swanson, S. Effect of sugarcane cultivar and foliar insecticide treatment on infestations of the invasive sugarcane thrips, Fulmekiola serrata (Thysanoptera: Thripidae), in Florida. J. Econ. Entomol. 2019, 112, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Cousins, S. The decline of the trophic level concept. Trends Ecol. Evol. 1987, 2, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A.; Strong, D.R. Food web complexity and community dynamics. Am. Nat. 1996, 147, 813–846. [Google Scholar] [CrossRef]
- Trebilco, R.; Baum, J.K.; Salomon, A.K.; Dulvy, N.K. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol. Evol. 2013, 28, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Martinez, N.D. Simple rules yield complex food webs. Nature 2000, 404, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Boltayev, B.; Boltayev, S. Management methods of harmful pests in the cotton-wheat crop rotation system. E3S Web Conf. 2021, 244, 02049. [Google Scholar] [CrossRef]
- Kozulina, N.S.; Vasilenko, A.V.; Vasilenko, A.A.; Shmeleva, Z.N. Effective protection of grain crops from pests. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042014. [Google Scholar] [CrossRef]
- Barbosa, P.; Hines, J.; Kaplan, I.; Martinson, H.; Szczepaniec, A.; Szendrei, Z. Associational resistance and associational susceptibility: Having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Knolhoff, L.M.; Heckel, D.G. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu. Rev. Entomol. 2014, 59, 263–278. [Google Scholar] [CrossRef]
- Khidr, S.K. Effects of organic fertilizers and wheat varieties on infestation by, corn leaf aphid, Rhopalosiphum maidis and wheat thrips, Haplothrips tritici and their predators. Iraqi J. Agric. Sci. 2018, 49, 93–104. [Google Scholar]
- Khan, A.A.; Khan, A.M.; Tahir, H.M.; Afzal, M.; Khaliq, A.; Khan, S.Y.; Raza, I. Effect of wheat cultivars on aphids and their predator populations. Afr. J. Biotechnol. 2011, 10, 18399–18402. [Google Scholar]
- Seddigh, S.; Bandani, A.R. Comparison of α- and β-mannosidase activity in the three cereal pests, Haplothrips tritici Kurdjumov (Thysanoptera: Phlaeothripidae), Rhopalosiphum padi L. (Homoptera: Aphididae) and Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Arch. Phytopathol. Plant Prot. 2013, 46, 2443–2449. [Google Scholar] [CrossRef]
- Mound, L.A.; Minaei, K. Australian thrips of the Haplothrips lineage (Insecta: Thysanoptera). J. Nat. Hist. 2007, 41, 2919–2978. [Google Scholar] [CrossRef]
- Gaafar, N.; El-Wakeil, N.; Abdel-Moniem, A.S.H.; Volkmar, C. Impact of some insecticide applications on wheat insect pests and their associated natural enemies in winter wheat [Feldstudie zum Nachweis und zur Regulation von Weizenschдdlingen und natьrlichen Antagonisten]. Gesunde Pflanz. 2014, 66, 121–128. [Google Scholar] [CrossRef]
- Miri, B.; Mirab-Balou, M.; Moeini-Naghadeh, N. On collection of predatory thrips (Insecta: Thysanoptera) in wheat fields. Zool. Ecol. 2020, 30, 83–88. [Google Scholar] [CrossRef]
- Alavi, J.; zur Strassen, R.; Bagheerani, N. Thrips (Thysanoptera) Species associated with wheat and barley in Golestan province, Iran. J. Entomol. Soc. Iran 2007, 27, 1–28. [Google Scholar]
- Freier, B.; Triltsch, H.; Mцwes, M.; Moll, E. The potential of predators in natural control of aphids in wheat: Results of a ten-year field study in two German landscapes. BioControl 2007, 52, 775–788. [Google Scholar] [CrossRef]
- Gaafar, N.; El-Wakeil, N.; Volkmar, C. Assessment of Wheat Ear Insects in Winter Wheat Varieties in Central Germany. J. Pest Sci. 2011, 84, 49–59. [Google Scholar] [CrossRef]
- Minaei, K.; Mound, L. New synonymy in the wheat thrips, Haplothrips tritici (Thysanoptera: Phlaeothripidae). Zootaxa 2014, 3802, 596–599. [Google Scholar] [CrossRef] [Green Version]
- Buriro, A.H.; Hameed, S.; Afridi, J.K.; Qazi, B.R.; Mahar, A.N. Population dynamics of Grain aphid, Sitobion avenae F. (Aphididae: Homoptera) and Barley thrips, Limothrips cerealium H. (Thripidae: Thysanoptera) on wheat and barley in Highland Balochistan Pakistan. J. Zool. 2006, 38, 191–196. [Google Scholar]
- Minaei, K.; Mound, L.A. Taxonomic problems in character state interpretation: Variation in the wheat thrips Haplothrips tritici (Kurdjumov) (Thysanoptera, Phlaeothripidae) in Iran. Dtsch. Entomol. Z. 2010, 57, 233–241. [Google Scholar] [CrossRef]
- Malschi, D.; Ivaş, A.D.; Ignea, M. Wheat pests control strategy according to agro-ecological changes in Transylvania. Rom. Agric. Res. 2012, 29, 367–377. [Google Scholar]
- Цzsisli, T. Population densities of wheat thrips, Haplothrips tritici Kurdjumov (Thysanoptera: Phlaeothripidae), on different wheat and barley cultivars in the province of Kahramanmaras, Turkey. Afr. J. Biotechnol. 2011, 10, 7063–7070. [Google Scholar]
- Kackol, E.; Kucharczyk, H. The occurrence of thrips (Thysanoptera, Insecta) on winter and spring wheat in chosen regions of Poland. Acta Phytopathol. Et. Entomol. Hung. 2004, 39, 263–269. [Google Scholar] [CrossRef]
- Bosque-Pйrez, N.A.; Schotzko, D.J. Wheat genotype, early plant growth stage and infestation density effects on Russian wheat aphid (Homoptera: Aphididae) population increase and plant damage. J. Entomol. Sci. 2000, 35, 22–38. [Google Scholar] [CrossRef]
- Morse, J.G.; Hoddle, M.S. Invasion biology of thrips. Annu. Rev. Entomol. 2006, 51, 67–89. [Google Scholar] [CrossRef]
- French, B.W.; Elliott, N.C.; Kindler, S.D.; Arnold, D.C. Seasonal occurrence of aphids and natural enemies in wheat and associated crops. Southwest. Entomol. 2001, 26, 49–61. [Google Scholar]
- Mound, L.A. Thysanoptera: Diversity and interactions. Annu. Rev. Entomol. 2005, 50, 247–269. [Google Scholar] [CrossRef]
- Marullo, R. Host-plant range and relationships in the Italian thrips fauna. Acta Phytopathol. Et. Entomol. Hung. 2004, 39, 243–254. [Google Scholar] [CrossRef]
- Zhichkina, L.N.; Kaplin, V.G. The biology and ecology of and damage to plants by Haplothrips tritici Kurd. (Thysanoptera) in the forest-steppe of the middle Volga area. Entomol. Obozr. 2001, 80, 830–842. [Google Scholar]
- Љmatas, R.; Tamoљiunas, K.; Danyte, V. Diversity and sex ratio of thrips (thysanoptera) species in winter wheat in Lithuania. Zemdirbyste 2013, 100, 289–292. [Google Scholar]
- Љmatas, R. Species structure and sex ratio of thrips (Thysanoptera) on winter rye (Secale cereale). Zemdirbyste 2009, 96, 260–267. [Google Scholar]
- Ahmed, A.M.M.; Radi, A.A.; Sбnchez, F.J.S. Population dynamic of aphids and thrips on certain bread wheat cultivars in relation to yield, genotypic preference and factors regulating their fluctuation under drought and irrigation conditions. Trop. Subtrop. Agroecosystems 2019, 22, 769–783. [Google Scholar]
- Buntin, G.D.; Beshear, R.J. Seasonal abundance of thrips (Thysanoptera) on winter small grains in Georgia. Environ. Entomol. 1995, 24, 1216–1223. [Google Scholar] [CrossRef]
- Minaei, K.; Aleosfoor, M. A new species of Haplothrips from southern Iran (Thysanoptera, Phlaeothripidae). ZooKeys 2013, 275, 91–99. [Google Scholar] [CrossRef] [Green Version]
- El-Wakeil, N.; Gaafar, N.; Volkmar, C. Susceptibility of spring wheat to infestation with wheat blossom midges and thrips. J. Plant Dis. Prot. 2011, 117, 261–267. [Google Scholar] [CrossRef]
- El-Wakeil, N.; Volkmar, C. Monitoring of wheat insects and their natural enemies using sticky traps in wheat. Arch. Phytopathol. Plant Prot. 2013, 46, 1523–1532. [Google Scholar] [CrossRef]
- Statistica Package. Statsoft. Available online: http://statsoft.ru/products/trial/ (accessed on 27 November 2022).
- Zhichkin, K.A.; Nosov, V.V.; Zhichkina, L.N.; Gubadullin, A.A. The Theory of Agriculture Multifunctionality on the Example of Private Households. Agriculture 2022, 12, 1870. [Google Scholar] [CrossRef]
- Malschi, D.; Tărău, A.D.; Vălean, A.M.; Şopterean, L.; Suciu, A.L.; Dărab, I.D.; Cheţan, C.; Tritean, N. Wheat pest dynamics, forecasting and current importance of the attack, to develop integrated control system in the center of transylvania (Ards Turda, 2006–2016). Rom. Agric. Res. 2018, 2018, 203–220. [Google Scholar]
- Morsello, S.C.; Groves, R.L.; Nault, B.A.; Kennedy, G.G. Temperature and precipitation affect seasonal patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci (Thysanoptera: Thripidae) caught on sticky traps. Environ. Entomol. 2008, 37, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, T.M.; Ward, R.V.; DePolt, K.T.; Roberts, P.M.; Greene, J.K.; Kennedy, G.G. Cotton thrips infestation predictor: A practical tool for predicting tobacco thrips (Frankliniella fusca) infestation of cotton seedlings in the south-eastern United States. Pest Manag. Sci. 2020, 76, 4018–4028. [Google Scholar] [CrossRef]
- Lin, T.; You, Y.; Zeng, Z.; Chen, Y.; Hu, J.; Lin, S.; Hu, Q.; Yang, F.; Wei, H. Temperature-Dependent Demography of Thrips hawaiiensis (Thysanoptera: Thripidae): Implications for Prevention and Control. Environ. Entomol. 2021, 50, 1455–1465. [Google Scholar] [CrossRef]
- Bale, J.S.; Gerday, C.; Parker, A.; Marahiel, M.A.; Shanks, I.A.; Davies, P.L.; Warren, G. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B: Biol. Sci. 2002, 357, 849–862. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, C.; Yang, W.-J.; Meng, Y.-L.; Wang, L.-J.; Shang, B.-Z.; Gao, Y.-L. Effects of Temperature on the Development and Reproduction of Thrips hawaiiensis (Thysanoptera: Thripidae). J. Econ. Entomol. 2018, 111, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, T.; Yamaguchi, K.; Fukazawa, M.; Mori, K. Effect of temperature on life history traits of the predatory thrips, Scolothrips takahashii Priesner (Thysanoptera: Thripidae). Appl. Entomol. Zool. 2004, 39, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Abenaim, L.; Bedini, S.; Greco, A.; Giannotti, P.; Conti, B. Predation Capacity of the Banded Thrips Aeolothrips intermedius for the Biological Control of the Onion Thrips Thrips tabaci. Insects 2022, 13, 702. [Google Scholar] [CrossRef] [PubMed]
- Trdan, S.; Rifelj, M.; Valic, N. Population dynamics of banded thrips (Aeolothrips intermedius Bagnall, Thysanoptera, Aeolothripidae) and its potential prey Thysanoptera species on white clover. Commun. Agric. Appl. Biol. Sci. 2005, 70, 753–758. [Google Scholar]
- Speyee, E.R.; Parr, W.J. The external structure of some Thysanopterous larvae. Trans. R. Entomol. Soc. Lond. 1941, 91, 559–635. [Google Scholar] [CrossRef]
- Steenbergen, M.; Abd-el-Haliem, A.; Bleeker, P.; Dicke, M.; Escobar-Bravo, R.; Cheng, G.; Haring, M.A.; Kant, M.R.; Kappers, I.F.; Klinkhamer, P.G.; et al. Thrips advisor: Exploiting thrips-induced defences to combat pests on crops. J. Exp. Bot. 2018, 69, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Stuart, R.R.; Gao, Y.-L.; Lei, Z.-R. Thrips: Pests of Concern to China and the United States. Agric. Sci. China 2011, 10, 867–892. [Google Scholar] [CrossRef]
- Pappas, M.L.; Tavlaki, G.; Triantafyllou, A.; Broufas, G. Omnivore-herbivore interactions: Thrips and whiteflies compete via the shared host plant. Sci. Rep. 2018, 8, 3996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visschers, I.G.; van Dam, N.M.; Peters, J.L. An objective high-throughput screening method for thrips damage quantitation using Ilastik and ImageJ. Entomol. Exp. Et. Appl. 2018, 166, 508–515. [Google Scholar] [CrossRef]
- Mouden, S.; Leiss, K.A. Host plant resistance to thrips (Thysanoptera: Thripidae)–current state of art and future research avenues. Curr. Opin. Insect Sci. 2021, 45, 28–34. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L. The production costs calculation automation for planning the crops production parameters. CEUR Workshop Proc. 2021, 2843, 20. [Google Scholar]
Years | Soybeans (Predecessor Winter Wheat) | Spring Barley (Predecessor Spring Wheat) | ||
---|---|---|---|---|
Average | SE | Average | SE | |
2008 | 213.0 | ±2.38 | 187.5 | ±2.09 |
2009 | 160.0 | ±1.79 | 93.3 | ±1.04 |
2010 | 146.0 | ±1.63 | 104.0 | ±1.16 |
2011 | 111.0 | ±1.22 | 91.1 | ±1.00 |
2012 | 98.0 | ±1.08 | 85.1 | ±0.93 |
Average | 145.6 | ±3.40 | 112.2 | ±3.16 |
Years | Soybeans (Predecessor Winter Wheat) | Spring Barley (Predecessor Spring Wheat) | ||
---|---|---|---|---|
Average | SE | Average | SE | |
2008 | 73.0/45.0 | ±0.81/±0.50 | 41.0/19.0 | ±0.46/±0.21 |
2009 | 58.3/39.6 | ±0.65/±0.44 | 35.0/11.2 | ±1.04/±0.13 |
2010 | 60.0/40.8 | ±0.67/±0.46 | 49.0/15.7 | ±0.55/±0.18 |
2011 | 52.6/35.5 | ±0.58/±0.39 | 43.5/13.1 | ±0.48/±0.14 |
2012 | 42.1/28.0 | ±0.46/±0.31 | 37.8/11.9 | ±0.42/±0.13 |
Average | 57.2/37.8 | ±0.87/±0.51 | 41.3/14.2 | ±0.44/±0.25 |
Years | Damaged Grains | Intact Grains | |||
---|---|---|---|---|---|
Weak Degree | Average Degree | Strong Degree | Total | ||
Winter Wheat | |||||
2008 | 39.6 | 23.2 | 1.7 | 64.5 | 35.5 |
2009 | 42.0 | 26.0 | 1.2 | 69.2 | 30.8 |
2010 | 47.6 | 17.0 | 3.1 | 67.7 | 32.3 |
2011 | 37.3 | 15.1 | 2.9 | 55.3 | 44.7 |
2012 | 2.3 | 22.4 | 32.0 | 56.7 | 43.3 |
Average | 33.8 | 20.7 | 8.2 | 62.7 | 37.3 |
Spring Wheat | |||||
2008 | 34.1 | 21.1 | 8.8 | 64.0 | 36.0 |
2009 | 34.5 | 18.3 | 7.3 | 60.1 | 39.9 |
2010 | 24.8 | 17.2 | 6.9 | 48.9 | 51.1 |
2011 | 31.4 | 20.0 | 8.4 | 59.8 | 40.2 |
2012 | 21.9 | 12.9 | 3.7 | 38.5 | 61.5 |
Average | 29.3 | 17.9 | 7.0 | 54.3 | 45.7 |
Crop | Yield, t/ha | Grain Loss, % | Grain Losses, t/ha |
---|---|---|---|
Winter wheat | 1.55 | 0.95 | 0.015 |
Spring wheat | 1.32 | 1.78 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhichkina, L.N.; Nosov, V.V.; Zhichkin, K.A. Seasonal Population Dynamics and Harmfulness of Wheat Thrips in Agrocenoses of Grain Crops. Agriculture 2023, 13, 148. https://doi.org/10.3390/agriculture13010148
Zhichkina LN, Nosov VV, Zhichkin KA. Seasonal Population Dynamics and Harmfulness of Wheat Thrips in Agrocenoses of Grain Crops. Agriculture. 2023; 13(1):148. https://doi.org/10.3390/agriculture13010148
Chicago/Turabian StyleZhichkina, Lyudmila N., Vladimir V. Nosov, and Kirill A. Zhichkin. 2023. "Seasonal Population Dynamics and Harmfulness of Wheat Thrips in Agrocenoses of Grain Crops" Agriculture 13, no. 1: 148. https://doi.org/10.3390/agriculture13010148
APA StyleZhichkina, L. N., Nosov, V. V., & Zhichkin, K. A. (2023). Seasonal Population Dynamics and Harmfulness of Wheat Thrips in Agrocenoses of Grain Crops. Agriculture, 13(1), 148. https://doi.org/10.3390/agriculture13010148