On the Identification of Agroforestry Application Areas Using Object-Oriented Programming
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Study Area
2.2. Data Manipulation
- MODIS dataset acquisition. In this step, the algorithm downloads all the required data for the study area and the time period specified by the user. The data include daily NDVI images from the MODIS satellite. The normalized difference vegetation index is generated from the near IR (NIR) and red (RED) bands as a ratio of (NIR − RED)/(NIR + RED) and the ratio values range between −1.0 and 1.0. The data are generated from the MODIS/006/MOD09GA surface reflectance composites. It is worth noting that all data are stored temporally on the cloud (Google Colab) and not locally on the user’s computer.
- Afterwards, we insert 100 randomly generated points and for these we estimate the median monthly NDVI values for each point (steps 2 and 3).
- The next step includes the usage of the ipygee tools for generating and viewing a chart of the NDVI variation on each point for the time period we defined (step 4).
- After the creation of the NDVI median chart, we apply the harmonic model (step 5). A Fourier (harmonic) analysis permits a complex curve (such as the one created in the previous step) to be expressed as a series of cosine waves (which are called terms) and an additive term [39].
- On the created harmonic model, we apply a clustering algorithm for the identification of samples with similar characteristics and therefore of the same origin and create the appropriate clusters. There are various clustering algorithms available, and in our case we used the time series K-means algorithm to cluster the samples.
2.3. Harmonic Analysis
2.4. Time Series Clustering
- -
- Assign each point to its closest centroid;
- -
- Compute the new centroid (mean) of each cluster;
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel-Weynand, T.; Bentrup, G.; Schoeneberger, M.M. (Eds.) Agroforestry: Enhancing Resiliency in U.S. Agricultural Landscapes under Changing Conditions; U.S. Department of Agriculture: Washington, DC, USA, 2017.
- Reay, D.S. Climate change for the masses. Nature 2008, 452, 31. [Google Scholar] [CrossRef] [Green Version]
- Tosi, J. Life Zone Ecology; Tropical Science Center: San Jose, CA, USA, 1966. [Google Scholar]
- Ntafis, S. Forest Ecology; Giaxoudi-Giapouli: Thessaloniki, Greece, 1986. [Google Scholar]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Woodwell, G.M.; Whittaker, R.H.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; Botkin, D.B. The Biota and the World Carbon Budget. Science 1978, 199, 141–146. [Google Scholar] [CrossRef]
- Jim, P.; Michael, G.; Taka, H.; Thelma, K.; Dina, K.; Riitta, P.; Leandro, B.; Kyoko, M.; Todd, N.; Kiyoto, T.; et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme (IPCC-NGGIP): Hayama, Japan, 2003; ISBN 4-88788-003-0. [Google Scholar]
- Simon, E.; Leandro, B.; Kyoko, M.; Todd, N.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovermental Panel on Climate Change: Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. CLIMATE CHANGE AND FORESTS OF THE FUTURE: MANAGING IN THE FACE OF UNCERTAINTY. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, S.; Cao, Y. Sensitivity of Summer Drying to Spring Snow-Albedo Feedback Throughout the Northern Hemisphere From Satellite Observations. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2345–2349. [Google Scholar] [CrossRef]
- Ioannou, K.; Myronidis, D. Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks. Sustainability 2021, 13, 5323. [Google Scholar] [CrossRef]
- Vannier, C.; Hubert-Moy, L. Detection of Wooded Hedgerows in High Resolution Satellite Images using an Object-Oriented Method. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. IV-731–IV-734. [Google Scholar]
- de Mendonça, G.C.; Costa, R.C.A.; Parras, R.; de Oliveira, L.C.M.; Abdo, M.T.V.N.; Pacheco, F.A.L.; Pissarra, T.C.T. Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Sci. Total Environ. 2022, 839, 156185. [Google Scholar] [CrossRef]
- Cardoso, A.; Laviola, B.G.; Santos, G.S.; de Sousa, H.U.; de Oliveira, H.B.; Veras, L.C.; Ciannella, R.; Favaro, S.P. Opportunities and challenges for sustainable production of A. aculeata through agroforestry systems. Ind. Crops Prod. 2017, 107, 573–580. [Google Scholar] [CrossRef]
- Carvalho Ribeiro, S.M.; Rajão, R.; Nunes, F.; Assis, D.; Neto, J.A.; Marcolino, C.; Lima, L.; Rickard, T.; Salomão, C.; Filho, B.S. A spatially explicit index for mapping Forest Restoration Vocation (FRV) at the landscape scale: Application in the Rio Doce basin, Brazil. Sci. Total Environ. 2020, 744, 140647. [Google Scholar] [CrossRef]
- Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of Three MODIS-Derived Vegetation Index Time Series for Dryland Vegetation Dynamics Monitoring. Remote Sens. 2015, 7, 7597–7614. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, K.; Lefakis, P.; Arabatzis, G. Development of a decision support system for the study of an area after the occurrence of forest fire. Int. J. Sustain. Soc. 2011, 3, 5–32. [Google Scholar] [CrossRef]
- Ioannou, K.; Birbilis, D.; Lefakis, P. A pilot prototype decision support system for recognition of Greek forest species. Oper. Res. 2009, 9, 141–152. [Google Scholar] [CrossRef]
- Ioannou, K. Education, communication and decision-making on renewable and sustainable energy. Sustainability 2019, 11, 5262. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, K.; Kosmatopoulos, L.; Zaimes, G.N.; Tsantopoulos, G. Geoinformatics as a tool for the application of energy policy. Int. J. Sustain. Agric. Manag. Inform. 2018, 4, 4–22. [Google Scholar]
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, K.; Karampatzakis, D.; Amanatidis, P.; Aggelopoulos, V.; Karmiris, I. Low-Cost Automatic Weather Stations in the Internet of Things. Information 2021, 12, 146. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sensing 2001, 67, 461–470. [Google Scholar]
- Gessesse, A.A.; Melesse, A.M. Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–92. [Google Scholar]
- Xue, S.-Y.; Xu, H.-Y.; Mu, C.-C.; Wu, T.-H.; Li, W.-P.; Zhang, W.-X.; Streletskaya, I.; Grebenets, V.; Sokratov, S.; Kizyakov, A.; et al. Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Adv. Clim. Chang. Res. 2021, 12, 456–465. [Google Scholar] [CrossRef]
- Yang, R.; Wang, L.; Tian, Q.; Xu, N.; Yang, Y. Estimation of the Conifer-Broadleaf Ratio in Mixed Forests Based on Time-Series Data. Remote Sens. 2021, 13, 4426. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Konrad Turlej, C.; Ozdogan, M.; Radeloff, V.C. Mapping forest types over large areas with Landsat imagery partially affected by clouds and SLC gaps. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102689. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Spring vegetation green-up dynamics in Central Europe based on 20-year long MODIS NDVI data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Touhami, I.; Moutahir, H.; Assoul, D.; Bergaoui, K.; Aouinti, H.; Bellot, J.; Andreu, J.M. Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia. Acta Oecologica 2022, 114, 103804. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, T.; Wang, S.; Li, J.; Muhanmmad, F. The NDVI-CV Method for Mapping Evergreen Trees in Complex Urban Areas Using Reconstructed Landsat 8 Time-Series Data. Forests 2019, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, K. Problems and Limitations of Satellite Image Orientation for Determination of Height Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Tsiripidis, I. The Plant-Communities of Beech Forests of Rhodope Mountain Range and Assesment of Their Environment for Reforestation. Ph.D. Thesis, Aristotle University of Thessaloniti, Thessaloniki, Greece, 2001. [Google Scholar]
- Flokas, A. Meteorology and Climatology Lessons; Ziti: Thessaloniki, Greece, 1997; ISBN 9789604312887. [Google Scholar]
- Davis, J. Statistics and Data Analysis in Geology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-17275-8. [Google Scholar]
- Gazor, M.; Shoghi, A. Tone colour in music and bifurcation control. J. Differ. Equ. 2022, 326, 129–163. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.; Zhang, S. Global existence and estimates for Blackstock’s model of thermoviscous flow with second sound phenomena. J. Differ. Equ. 2022, 324, 76–101. [Google Scholar] [CrossRef]
- Juntunen, C.; Woller, I.M.; Abramczyk, A.R.; Sung, Y. Deep-learning-assisted Fourier transform imaging spectroscopy for hyperspectral fluorescence imaging. Sci. Rep. 2022, 12, 2477. [Google Scholar] [CrossRef] [PubMed]
- Brostrøm, A.; Mølhave, K. Spatial Image Resolution Assessment by Fourier Analysis (SIRAF). Microsc. Microanal. 2022, 28, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Purinton, B.; Bookhagen, B. Beyond Vertical Point Accuracy: Assessing Inter-pixel Consistency in 30 m Global DEMs for the Arid Central Andes. Front. Earth Sci. 2021, 9, 758606. [Google Scholar] [CrossRef]
- Todorova, M.; Grozeva, N.; Takuchev, N.P.; Ivanova, D.; Kuzmova, K.; Kazandjiev, V.; Georgieva, V.; Velichkova, R.; Boneva, V. Vegetation in Bulgaria according to data from satellite observations and NASA models. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1031, 012083. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-Verdugo, F.; Rodríguez-Sobreyra, R.; Kovacs, J.M.; Flores-de-Santiago, F. Extrapolating canopy phenology information using Sentinel-2 data and the Google Earth Engine platform to identify the optimal dates for remotely sensed image acquisition of semiarid mangroves. J. Environ. Manag. 2021, 279, 111617. [Google Scholar] [CrossRef]
- Filchev, L.; Pashova, L.; Kolev, V.; Frye, S. Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–136. [Google Scholar]
- Wickramasinghe, A.; Muthukumarana, S.; Loewen, D.; Schaubroeck, M. Temperature clusters in commercial buildings using k-means and time series clustering. Energy Informatics 2022, 5, 1. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100. [Google Scholar] [CrossRef]
- Xu, L.; Ouyang, X.-Z.; Pan, P.; Zang, H.; Liu, J.; Yang, K. Identification of forest vegetation types in southern China based on spatio-temporal fusion of GF-1 WFV and MODIS data. Chin. J. Appl. Ecol. 2022, 33, 1948–1956. [Google Scholar]
- Asam, S.; Gessner, U.; González, R.A.; Wenzl, M.; Kriese, J.; Kuenzer, C. Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data. Remote Sens. 2022, 14, 2981. [Google Scholar] [CrossRef]
- Pech-May, F.; Aquino-Santos, R.; Rios-Toledo, G.; Posadas-Durán, J.P.F. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine. Sensors 2022, 22, 4729. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, P.M.; Cutler, M.E.J.; Lewis, H. Mapping sub-pixel proportional land cover with AVHRR imagery. Int. J. Remote Sens. 1997, 18, 917–935. [Google Scholar] [CrossRef]
- Kremer, R.G.; Running, S.W. Community type differentiation using NOAA/AVHRR data within a sagebrush-steppe ecosystem. Remote Sens. Environ. 1993, 46, 311–318. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Pinto, S.R.; Pugliese, L.; Padovezi, A.; Ribeiro Rodrigues, R.; Calmon, M.; Carrascosa, H.; Castro, P.; Mesquita, B. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 2016, 3, 15–17. [Google Scholar] [CrossRef]
- Chazdon, R.L. Towards more effective integration of tropical forest restoration and conservation. Biotropica 2019, 51, 463–472. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Gandolfi, S.; Nave, A.G.; Aronson, J.; Barreto, T.E.; Vidal, C.Y.; Brancalion, P.H.S. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manag. 2011, 261, 1605–1613. [Google Scholar] [CrossRef]
- Tsiantikoudis, S.; Zafeiriou, E.; Kyriakopoulos, G.; Arabatzis, G. Revising the environmental Kuznets Curve for deforestation: An empirical study for Bulgaria. Sustainability 2019, 11, 4364. [Google Scholar] [CrossRef] [Green Version]
- Stankuniene, G.; Streimikiene, D.; Kyriakopoulos, G.L. Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households. Sustainability 2020, 12, 7369. [Google Scholar] [CrossRef]
- Yu, X.; Ma, S.; Cheng, K.; Kyriakopoulos, G.L. An Evaluation System for Sustainable Urban Space Development Based in Green Urbanism Principles—A Case Study Based on the Qin-Ba Mountain Area in China. Sustainability 2020, 12, 5703. [Google Scholar] [CrossRef]
Correctly Recognized | Percentage | Incorrectly Recognized | Percentage | |
---|---|---|---|---|
Conifers | 25 | 69.4% | 11 | 30.6% |
Broadleaved and Mixed | 56 | 87.5% | 8 | 12.5% |
Total | 81 | 19 | ||
Kappa coefficient = 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, K. On the Identification of Agroforestry Application Areas Using Object-Oriented Programming. Agriculture 2023, 13, 164. https://doi.org/10.3390/agriculture13010164
Ioannou K. On the Identification of Agroforestry Application Areas Using Object-Oriented Programming. Agriculture. 2023; 13(1):164. https://doi.org/10.3390/agriculture13010164
Chicago/Turabian StyleIoannou, Konstantinos. 2023. "On the Identification of Agroforestry Application Areas Using Object-Oriented Programming" Agriculture 13, no. 1: 164. https://doi.org/10.3390/agriculture13010164
APA StyleIoannou, K. (2023). On the Identification of Agroforestry Application Areas Using Object-Oriented Programming. Agriculture, 13(1), 164. https://doi.org/10.3390/agriculture13010164