Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Sampling Procedure
2.3. Field Survey Data Acquisition
2.4. Land Use and Land Cover Change Data
2.5. Data Analysis
3. Results and Discussion
3.1. Household Characteristics
3.2. Agro-Climatological-Based Farmers’ Perceptions on the Determinants of LULCC
3.3. Proximate Causes
3.4. Underlying Driving Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawat, J.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Kilma Luwa, J.; Bamutazeb, Y.; Majaliwa Mwanjalolob, J.G.; Waiswab, D.; Pilesjöc, P.; Mukengere, E.B. Impacts of land use and land cover change in response to different driving forces in Uganda: Evidence from a review. Afr. Geogr. Rev. 2021, 40, 378–394. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, B.; Huang, J.; Zhang, Y.; Yang, J.; Deng, R.; Yang, Q. Analysis of Land Use Changes and Driving Forces in the Yanhe River Basin from 1980 to 2015. J. Sens. 2021, 2021, 6692333. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro–ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Friis, C.; Reenberg, A. Land grab in Africa: Emerging land system drivers in a teleconnected world. GLP Rep. 2010, 1, 1–42. [Google Scholar]
- Bufebo, B.; Elias, E. Land Use/Land Cover Change and Its Driving Forces in Shenkolla Watershed, South Central Ethiopia. Sci. World J. 2021, 2021, 9470918. [Google Scholar] [CrossRef]
- Ostwald, M.; Wibeck, V.; Stridbeck, P. Proximate causes and underlying driving forces of land-use change among small-scale farmers—Illustrations from the Loess Plateau, China. J. Land Use Sci. 2009, 4, 157–171. [Google Scholar] [CrossRef]
- Braimoh, A.K. Agricultural land-use change during economic reforms in Ghana. Land Use Policy 2009, 26, 763–771. [Google Scholar] [CrossRef]
- Turner, B.L.; Meyer, W.B.; Skole, D.L. Global land–use/land–cover change: Towards an integrated study. Ambio. Stockholm 1994, 23, 91–95. [Google Scholar]
- Asmamaw, L.B.; Mohammed, A.A.; Lulseged, T.D. Land use/cover change and their effects in the Gerado catchment, northeastern Ethiopia. Int. J. Environ. Stud. 2011, 68, 883–900. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa–Shashemene landscape of the south–central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef]
- Zak, M.R.; Cabido, M.; Cáceres, D.; Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socio–economic, and technological factors. Environ. Manag. 2008, 42, 181–189. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Gan, F.; Lu, Y.; Wang, H.; Zhang, J.; Ju, X. Identifying the spatio-temporal variability of human activity intensity and associated drivers: A case study on the Tibetan Plateau. Front. Earth Sci. 2022, 16, 744–756. [Google Scholar] [CrossRef]
- Verbist, B.; Putra, A.E.D.; Budidarsono, S. Factors driving land use change: Effects on watershed functions in a coffee agroforestry system in Lampung, Sumatra. Agric. Syst. 2005, 85, 254–270. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P. Approaches and terminology for causal analysis in land systems science. J. Land Use Sci. 2015, 11, 501–522. [Google Scholar] [CrossRef]
- Reid, R.S.; Kruska, R.L.; Muthui, N.; Taye, A.; Wotton, S.; Wilson, C.J.; Mulatu, W. Land–use and land–cover change in response to changes in climatic, biological and socio–political forces: The case of southwestern Ethiopia. Landsc. Ecol. 2000, 15, 339–355. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio–economic driving forces of land–use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Bezu, S.; Holden, S. Are Rural Youth in Ethiopia Abandoning Agriculture? World Dev. 2014, 64, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Moreland, S.; Smith, E. Modeling Climate Change, Food Security, and Population. MEASURE Evaluation, March. 2012. Available online: https://www.measureevaluation.org/resources/publications/sr-12-69.html (accessed on 1 March 2020).
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Modeling the Spatio–temporal change and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. Model. Earth Syst. Environ. 2017, 3, 1285–1301. [Google Scholar] [CrossRef]
- Bewket, W.; Abebe, S. Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int. J. Environ. Stud. 2013, 70, 126–139. [Google Scholar] [CrossRef]
- Zeleke, G.; Hurni, H. Implications of Land Use and Land Cover Dynamics for Mountain Resource Degradation in the Northwestern Ethiopian Highlands. Mt. Res. Dev. 2001, 21, 184–191. [Google Scholar] [CrossRef] [Green Version]
- FAO. Role of Planted Forests and Trees Outside Forests in Sustainable Forest Management: Country Study Report; FAO: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Peng, J.; Xu, Y.; Cai, Y.; Xiao, H. Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: A case study on the Maotiaohe watershed. Environ. Earth Sci. 2011, 64, 2107–2118. [Google Scholar] [CrossRef]
- Msofe, N.; Sheng, L.; Lyimo, J. Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability 2019, 11, 505. [Google Scholar] [CrossRef] [Green Version]
- Betru, T.; Tolera, M.; Sahle, K.; Kassa, H. Trends and drivers of land use/land cover change in Western Ethiopia. Appl. Geogr. 2019, 104, 83–93. [Google Scholar] [CrossRef]
- Campbell, D.J.; Lusch, D.P.; Smucker, T.A.; Wangui, E.E. Multiple Methods in the Study of Driving Forces of Land Use and Land Cover Change: A Case Study of SE Kajiado District, Kenya. Hum. Ecol. 2005, 33, 763–794. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G. Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agric. Ecosyst. Environ. 2013, 164, 100–113. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, J.; Lei, B. Physical and Socioeconomic Driving Forces of Land-Use and Land-Cover Changes: A Case Study of Wuhan City, China. Discret. Dyn. Nat. Soc. 2016, 2016, 8061069. [Google Scholar] [CrossRef] [Green Version]
- Shooshtari, S.J.; Gholamalifard, M. Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sens. Appl. Soc. Environ. 2015, 1, 1–19. [Google Scholar] [CrossRef]
- Deng, X. Modeling the Change and Consequences of Land System Change; Springer: Berlin, Germany, 2011; pp. 257–261. [Google Scholar]
- Veldkamp, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Ayenew, T.; GebreEgziabher, M.; Kebede, S.; Mamo, S. Integrated assessment of hydrogeology and water quality for groundwater-based irrigation development in the Raya Valley, northern Ethiopia. Water Int. 2013, 38, 480–492. [Google Scholar] [CrossRef]
- Kuffa, G. Population Stabilization Report: Ethiopia. Population Communication. 2014. Available online: http://populationcommunication.com/wpcontent/uploads/2014/06/POPULATION_STABILISATION_REPORT–ETHIOPIA (accessed on 5 May 2020).
- Cochran, W.G. Sampling Techniques, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1963. [Google Scholar]
- Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change Models. Dynamics of Space, Time, and Human Choice; CIPEC Collaborative Report Series 1; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Newton Square, PA, USA, 2001.
- Geist, H.J.; Lambin, E.F. Dynamic Causal Patterns of Desertification. Bioscience 2004, 54, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Geist, H. Our Earth’s Changing Land: An Encyclopedia of Land–Use and Land–Cover Change; Greenwood Publishing Group: California, USA, 2005. [Google Scholar]
- Serneels, S.; Lambin, E.F. Proximate causes of land–use change in Narok District, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Kauppi, P.; Sedjo, R. Technological and economic potential of options to enhance, maintain, and manage biological carbon reservoirs and geo-engineering. Econ. For. 2001, 3, 301. [Google Scholar]
- Dimobe, K.; Ouédraogo, A.; Soma, S.; Goetze, D.; Porembski, S.; Thiombiano, A. Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Glob. Ecol. Conserv. 2015, 4, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Bowonder, B. Deforestation in Developing Countries. J. Environ. Syst. 1985, 15, 171–192. [Google Scholar] [CrossRef]
- Miyamoto, M.; Parid, M.M.; Aini, Z.N.; Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 2014, 44, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Yili, Z.; Jungang, G. Assessment of Changes in the Value of Ecosystem Services in the Koshi River Basin, Central High Himalayas Based on Land Cover Changes and the CA-Markov Model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar] [CrossRef]
- Zondag, B.; Borsboom, J. Driving forces of land–use change. In Proceedings of the 49th ERSA conference August, Lodz, Poland, 25–29 August 2009. [Google Scholar]
- Wondie, M.; Schneider, W.; Melesse, A.M.; Teketay, D. Spatial and Temporal Land Cover Changes in the Simen Mountains National Park, a World Heritage Site in Northwestern Ethiopia. Remote Sens. 2011, 3, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Xie, Y.; Mei, Y.; Guangjin, T.; Xuerong, X. Socio-economic driving forces of arable land conversion: A case study of Wuxian City, China. Glob. Environ. Chang. 2005, 15, 238–252. [Google Scholar] [CrossRef]
- Gyawali, B.R.; Fraser, R.; Wang, Y.; Bukenya, J.O. Land Cover and Socio–economic Characteristics in the Eight Counties of Alabama: A Spatial Analysis. In Proceedings of the American Agricultural Economics Association Annual Meeting, Denver, CO, USA, 1–4 August 2004. [Google Scholar]
- Daniel, A. Remote Sensing and GIS Based Land Use and Land Cover Change Detection in the Upper Dijo River Catchment, Silte Zone Southern Ethiopia; Addis Ababa University: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Hurni, H.; Tato, K.; Zeleke, G. The Implications of Changes in Population, Land Use, and Land Management for Surface Runoff in the Upper Nile Basin Area of Ethiopia. Mt. Res. Dev. 2005, 25, 147–154. [Google Scholar] [CrossRef] [Green Version]
S. No. | Site | Households | Total Household | Family Size | |||
---|---|---|---|---|---|---|---|
Urban | % | Rural | % | ||||
1. | Megale | 209 | 0.8 | 4475 | 1.8 | 4684 | 6.0 |
2. | Yalo | 194 | 0.8 | 7911 | 3.2 | 8105 | 5.9 |
3. | Gulina | 831 | 3.3 | 6989 | 2.8 | 7820 | 6.4 |
4. | Gidan | 2420 | 9.5 | 34,889 | 14.1 | 37,309 | 4.2 |
5. | Kobo | 9398 | 36.8 | 44,841 | 18.2 | 54,239 | 4.1 |
6. | Alaje | 2118 | 8.3 | 22,629 | 9.2 | 24,747 | 4.4 |
7. | Alamata | 1283 | 5.0 | 19,212 | 7.8 | 20,495 | 4.2 |
8. | Hintalo–Wejirat | 3411 | 13.4 | 30,868 | 12.5 | 34,279 | 4.5 |
9. | Ofla | – | 0.0 | 29,525 | 12.0 | 29,525 | 4.3 |
10. | Endamehoni | 904 | 3.5 | 17,894 | 7.3 | 18,798 | 4.5 |
11. | Raya Azebo | 4739 | 18.6 | 27,555 | 11.2 | 32,294 | 4.2 |
Total | 25,507 | 100 | 246,788 | 100 | 272,295 | - |
Altitude (m) | Agro-Ecology | Household (Number) | Household (%) | Sample Size (Number) | Sample Size (%) | Area (km2) | Area (%) |
---|---|---|---|---|---|---|---|
<500 | Desert | 0.0 | 0.0 | 0.0 | 0.0 | 233.5 | 1.6 |
500–1500 | Lowlands | 52,236.0 | 19.2 | 47.0 | 19.1 | 5416.8 | 37.3 |
1500–2300 | Midlands | 114,869.0 | 42.2 | 104.0 | 42.3 | 5428.9 | 37.4 |
2300–3200 | Highlands | 103,324.0 | 37.9 | 93.0 | 37.8 | 3051.0 | 21.0 |
3200–3700 | Sub–alpine | 1679.0 | 0.6 | 2.0 | 0.8 | 372.5 | 2.6 |
>3700 | Alpine | 187.0 | 0.1 | 0.0 | 0.0 | 29.3 | 0.2 |
Total | 272,295 | 100 | 246 | 100 | 14,532.0 | 100 |
Land Use and Land Cover Types | Description |
---|---|
Cropland (Cl) | Those regularly used to grow domesticated plants, ranging from the long-fallow, land-rotational systems to permanent, intensively, moderately, and sparsely cultivated land |
Forest land (Fl) | Land spanning more than 0.5 hectares with trees higher than 5 m and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. |
Shrub/bushland (Shl/bl) | Woody perennial plant, generally more than 0.5 m and less than 5 m in height at maturity and without a definite crown. Areas with a cover of shrubs and short trees mixed with grasses |
Built up area (Bu) | Residential, urban area, commercial, and industrial |
Water body (Wb) | Inland water bodies generally include major rivers, lakes and water reservoirs |
Grassland (Gl) | Land with herbaceous types of cover; tree and shrub cover is less than 10% |
Barren land (Bl) | Land with exposed soil, sand, rocks, or snow and never have more than 10% vegetated cover at any time of the year |
Floodplain (Fp) | Flat area of land next to a river or stream covered by the lower course of the river, carrying a large volume of water during the rainy season, but covered most of the year by sand and different sizes of gravel and stones |
LC | 1984 | 1995 | LULCC from 1984–1995 | |||||
---|---|---|---|---|---|---|---|---|
Area in km2 | % | Area in km2 | % | Area in km2 | % | Annual Change Rate in km2 | % | |
Cl | 6076 | 41.8 | 4774.8 | 32.9 | −1301.2 | −21.4 | −118.3 | −1.95 |
Fl | 115.1 | 0.8 | 187.6 | 1.3 | +72.5 | 63 | +6.6 | +5.73 |
Shl/bl | 2821.9 | 19.4 | 4474.8 | 30.8 | +1652.9 | 58.6 | +150.3 | +5.33 |
Bu | 95.7 | 0.7 | 192.4 | 1.3 | +96.8 | 101.1 | +8.8 | +9.19 |
Wb | 50.6 | 0.3 | 57.3 | 0.4 | +6.6 | 13.1 | +0.6 | +1.19 |
Gl | 328.3 | 2.3 | 566.1 | 3.9 | +237.8 | 72.4 | +21.6 | +6.59 |
Bl | 2129.1 | 14.7 | 2156.3 | 14.8 | +27.2 | 1.3 | +2.5 | +0.12 |
Fp | 2915.6 | 20.1 | 2122.9 | 14.6 | −792.7 | −27.2 | −72.1 | −2.47 |
Total | 14,532 | 100 | 14,532 | 100 | - | - | - | - |
LC | 1995 | 2015 | LULCC from 1995–2015 | |||||
Area in km2 | % | Area in km2 | % | Area in km2 | % | Annual Change Rate in km2 | % | |
Cl Fl | 4774.8 187.6 | 32.9 1.3 | 6232.3 244.2 | 42.9 1.7 | +1457.5 +56.6 | +30.5 +30.2 | +72.9 +2.8 | +1.5 +1.5 |
Shl/bl | 4474.8 | 30.8 | 3547.3 | 24.4 | −927.4 | −20.7 | −46.4 | −1.0 |
Bu | 192.4 | 1.3 | 592.9 | 4.1 | +400.4 | +208.1 | +20 | +10.4 |
Wb | 57.3 | 0.4 | 46.2 | 0.3 | −11.0 | −19.3 | −0.6 | −1.0 |
Gl | 566.1 | 3.9 | 207.2 | 1.4 | −359.0 | −63.4 | −17.9 | −3.2 |
Bl | 2156.3 | 14.8 | 2914.8 | 20.1 | +758.5 | +35.2 | +37.9 | +1.8 |
Fp | 2122.9 | 14.6 | 747.2 | 5.1 | −1375.7 | −64.8 | −68.8 | −3.2 |
Total | 14,532 | 100 | 14,532 | 100 | - | - | - | - |
LC | 1984 | 2015 | LULCC from 1984–2015 | |||||
Area in km2 | % | Area in km2 | % | Area in km2 | % | Annual Change Rate in km2 | % | |
Cl | 6076 | 41.8 | 6232.3 | 42.9 | 156.3 | +2.6 | +5.0 | +0.08 |
Fl | 115.1 | 0.8 | 244.2 | 1.7 | 129.1 | +112.2 | +4.2 | +3.62 |
Shl/bl | 2821.9 | 19.4 | 3547.3 | 24.4 | 725.5 | +25.7 | +23.4 | +0.83 |
Bu | 95.7 | 0.7 | 592.9 | 4.1 | 497.2 | +519.7 | +16.0 | +16.76 |
Wb | 50.6 | 0.3 | 46.2 | 0.3 | −4.4 | −8.7 | −0.1 | −0.28 |
Gl | 328.3 | 2.3 | 207.2 | 1.4 | −121.1 | −36.9 | −3.9 | −1.19 |
Bl | 2129.1 | 14.7 | 2914.8 | 20.1 | 785.7 | +36.9 | +25.3 | +1.19 |
Fp | 2915.6 | 20.1 | 747.2 | 5.1 | −2168.4 | −74.4 | −69.9 | −2.40 |
Total | 14,532 | 100 | 14,532 | 100 | - | - | - | - |
Determinant Factors | Household Response | Agro-Climatological Zone | Chi-Square | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Lowland | Midland | Highland | |||||||
Freq. | % | Freq. | % | Freq. | % | ||||
Agricultural land intensification | No | 138 | 80.2 | 27 | 64.3 | 25 | 78.1 | 4.899 | 0.086 |
Yes | 34 | 19.8 | 15 | 35.7 | 7 | 21.9 | |||
Climate Change/Variability | No | 2 | 1.2 | 1 | 2.4 | 0 | 0.0 | 0.870 | 0.647 |
Yes | 170 | 98.8 | 41 | 97.6 | 32 | 100.0 | |||
Settlement expansion | No | 23 | 13.4 | 4 | 9.5 | 1 | 3.1 | 2.982 | 0.225 a |
Yes | 149 | 86.6 | 38 | 90.5 | 31 | 96.9 | |||
Urbanization | No | 110 | 64.0 | 25 | 59.5 | 11 | 34.4 | 9.785 | 0.008 * |
Yes | 62 | 36.0 | 17 | 40.5 | 21 | 65.6 | |||
Government Land use policy | No | 46 | 26.7 | 3.0 | 7.1 | 10 | 31.3 | 8.179 | 0.017 * |
Yes | 126 | 73.3 | 39 | 92.9 | 22 | 68.8 | |||
Population growth/pressure | No | 6.0 | 3.5 | 1.0 | 2.4 | 0.0 | 0.0 | 1.227 | 0.541 a,b |
Yes | 166 | 96.5 | 41 | 97.6 | 32 | 100.0 | |||
Land degradation | No | 15 | 8.7 | 4 | 9.5 | 1 | 3.1 | 1.263 | 0.532 |
Yes | 157 | 91.3 | 38 | 90.5 | 31 | 96.9 | |||
Deforestation | No | 10 | 5.8 | 2 | 4.8 | 1 | 3.1 | 0.417 | 0.812 a |
Yes | 162 | 94.2 | 40 | 95.2 | 31 | 96.9 | |||
Fuelwood extraction | No | 16 | 9.3 | 0 | 0.0 | 1 | 3.1 | 5.360 | 0.069 a |
Yes | 156 | 90.7 | 42 | 100.0 | 31 | 96.9 | |||
Overgrazing | No | 35 | 20.3 | 0 | 0.0 | 1 | 3.1 | 15.089 | 0.001 * |
Yes | 137 | 79.7 | 42 | 100.0 | 31 | 96.9 | |||
Drought | No | 4 | 2.3 | 8 | 19.0 | 0 | 0.0 | 22.229 | 0.000 a,* |
Yes | 168 | 97.7 | 34 | 81.0 | 32 | 100.0 | |||
Lack of employment | No | 55 | 32.0 | 10 | 23.8 | 7 | 21.9 | 2.059 | 0.357 |
Yes | 117 | 68.0 | 32 | 76.2 | 25 | 78.1 | |||
Infrastructure expansion | No | 66 | 38.4 | 17 | 40.5 | 15 | 46.9 | 0.823 | 0.663 |
Yes | 106 | 61.6 | 25 | 59.5 | 17 | 53.1 | |||
Stone quarry (mining) | No | 140 | 81.4 | 41 | 97.6 | 22 | 68.8 | 10.996 | 0.004 * |
Yes | 32 | 18.6 | 1 | 2.4 | 10 | 31.3 |
Causes | Coef. | Std. Err. | Z | p > z | [95% Conf. | Interval] |
---|---|---|---|---|---|---|
Agricultural land expansion | 1.80 | 1.04 | 1.73 | 0.08 * | −0.24 | 3.85 |
Fuelwood extraction | 1.52 | 0.61 | 2.51 | 0.01 ** | 0.33 | 2.71 |
Overgrazing | 0.35 | 0.53 | 0.67 | 0.50 | −0.68 | 1.39 |
Deforestation | −0.42 | 0.52 | −0.81 | 0.42 | −1.43 | 0.60 |
Infrastructure expansion | 0.24 | 0.47 | 0.52 | 0.61 | −0.68 | 1.17 |
Factors | Coef. | Std. Err. | Z | P > z | [95% Conf. | Interval] |
---|---|---|---|---|---|---|
Persistent drought | 2.61 | 0.77 | 3.38 | 0.00 * | 1.09 | 4.12 |
Population growth | 2.49 | 1.13 | 2.21 | 0.03 * | 0.28 | 4.69 |
Lack of land use policy | −0.667 | 0.61 | −1.10 | 0.27 | −1.86 | 0.52 |
Climate variability/change | 1.50 | 0.60 | 2.50 | 0.01 * | 0.32 | 2.68 |
Topography | 0.58 | 0.54 | 1.07 | 0.29 | −0.48 | 1.64 |
Lack of employment | 0.17 | 0.55 | 0.30 | 0.76 | −0.90 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A.; Mussa, S.; Mhangara, P.; Birhane, E. Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands. Agriculture 2023, 13, 507. https://doi.org/10.3390/agriculture13020507
Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A, Mussa S, Mhangara P, Birhane E. Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands. Agriculture. 2023; 13(2):507. https://doi.org/10.3390/agriculture13020507
Chicago/Turabian StyleGidey, Eskinder, Oagile Dikinya, Reuben Sebego, Eagilwe Segosebe, Amanuel Zenebe, Said Mussa, Paidamwoyo Mhangara, and Emiru Birhane. 2023. "Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands" Agriculture 13, no. 2: 507. https://doi.org/10.3390/agriculture13020507
APA StyleGidey, E., Dikinya, O., Sebego, R., Segosebe, E., Zenebe, A., Mussa, S., Mhangara, P., & Birhane, E. (2023). Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands. Agriculture, 13(2), 507. https://doi.org/10.3390/agriculture13020507