Potential of Nonthermal Atmospheric-Pressure Dielectric Barrier Discharge Plasma for Inhibition of Athelia rolfsii Causing Southern Blight Disease in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of the Fungus
2.2. DBD Plasma Device and Properties
2.3. DBD Plasma Treatment
2.4. Fungal Morphological Observation under Scanning Electron Microscopy (SEM)
2.5. Effects of DBD Plasma on Reduction in Disease Incidence and Severity of Southern Blight
2.6. Statistical Analysis
3. Results
3.1. Fungal Inhibition by DBD Plasma
3.2. Fungal Morphology after DBD Plasma Exposure under SEM
3.3. Effects of DBD Plasma on Reduction in Disease Incidence and Severity of Southern Blight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mamo, B.E.; Eriksen, R.L.; Adhikari, N.D.; Hayes, R.J.; Mou, B.; Simko, I. Epidemiological Characterization of Lettuce Drop (Sclerotinia spp.) and Biophysical Features of The Host Identify Soft Stem as A Susceptibility Factor. PhytoFrontiers 2021, 1, 182–204. [Google Scholar] [CrossRef]
- Adams, P.B.; Ayers, W.A. Ecology of Sclerotinia Species. Phytopathology 1979, 69, 896–899. [Google Scholar] [CrossRef]
- Mahadevakumar, S.; Yadav, V.; Tejaswini, G.S.; Janardhana, G.R. Morphological and Molecular Characterization of Sclerotium rolfsii Associated with Fruit Rot of Cucurbita maxima. Eur. J. Plant Pathol. 2016, 145, 215–219. [Google Scholar] [CrossRef]
- Tejaswini, G.S.; Mahadevakumar, S.; Sowmya, R.; Deepika, Y.S.; Meghavarshinigowda, B.R.; Nuthan, B.R.; Sharvani, K.A.; Amruthesh, K.N.; Sridhar, K.R. Molecular Detection and Pathological Investigations on Southern Blight Disease Caused by Sclerotium rolfsii on Cabbage (Brassica oleracea var. capitata): A New Record in India. J. Phytopathol. 2022, 170, 363–372. [Google Scholar] [CrossRef]
- El-Ashmony, R.M.S.; Zaghloul, N.S.S.; Milošević, M.; Mohany, M.; Al-Rejaie, S.S.; Abdallah, Y.; Galal, A.A. The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus Trichoderma harzianum and Their Antifungal Efficacy Against Sclerotinia sclerotiorum and Sclerotium rolfsii. J. Fungi 2022, 8, 597. [Google Scholar] [CrossRef]
- Mullen, J. Southern Blight, Southern Stem Blight, White Mold. Plant Health Instr. 2001. [Google Scholar] [CrossRef]
- Ordonez-Valencia, C.; Ferrera-Cerrato, R.; Quintanar-Zuniga, R.E.; Flores-Ortiz, C.M.; Guzman, G.J.M.; Alarcon, A.; Larsen, J.; Garcia-Barradas, O. Morphological Development of Sclerotia by Sclerotinia sclerotiorum: A View from Light and Scanning Electron Microscopy. Ann. Microbiol. 2015, 65, 765–770. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Durr, C.; Schwanck, A.A.; Robin, M.H.; Sarthou, J.P.; Cellier, V.; Messean, A.; Aubertot, J.N. Integrated Management of Damping-Off Diseases. A Review. Agron. Sustain. Dev. 2017, 37, 10–35. [Google Scholar] [CrossRef]
- Yodpitak, S.; Mahatheeranont, S.; Boonyawan, D.; Sookwong, P.; Roytrakul, S.; Norkaew, O. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chem. 2019, 298, 328–339. [Google Scholar] [CrossRef]
- Fridman, G. Non-equilibrium Plasmas in Biology and Medicine. In Biological and Environmental Application of Gas Discharge Plasmas; Brelles, M.G., Ed.; California State Polytechnic University, Pomona: Claremont, CA, USA, 2012; pp. 95–184. [Google Scholar]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Masaharu, S.M. Plasma Agriculture from Laboratory to Farm: A Review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Zhang, J.J.; Kwon, T.; Kim, S.B.; Jeong, D.K. Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens. Plasma 2018, 1, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Mildaziene, V.; Sera, B. Effects of Non-Thermal Plasma Treatment on Plant Physiological and Biochemical Processes. Plants 2022, 11, 1018. [Google Scholar] [CrossRef]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D 2017, 50, 323001. [Google Scholar] [CrossRef]
- Conrads, H.; Schmidt, M. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 2000, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-Thermal Plasma Technologies: New Tools for Bio-Decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef]
- Chutsirimongkol, C.; Boonyawan, D.; Polnikorn, N.; Techawatthanawisan, W.; Kundilokchai, T.; Bunsaisup, C.; Rummaneethorn, P.; Kirdwichai, W.; Chuangsuwanich, A.; Powthong, P. Non-Thermal Atmospheric Dielectric Barrier Discharge Plasma, Medical Application Studies in Thailand. Plasma Med. 2016, 6, 429–446. [Google Scholar] [CrossRef] [Green Version]
- Vajpayee, M.; Singh, M.; Ledwani, L.; Prakash, R.; Nema, S.K. Investigation of Antimicrobial Activity of DBD Air Plasma-Treated Banana Fabric Coated with Natural Leaf Extracts. ACS Omega 2020, 5, 19034–19049. [Google Scholar] [CrossRef]
- Alhazime, A.A. Generation and Characterization of Atmospheric Pressure Dielectric Barrier Discharge Air Plasma and Its Antifungal Potential: A Case Study on Alternaria alternata. J. Taibah Univ. Sci. 2021, 15, 1168–1177. [Google Scholar] [CrossRef]
- Ambrico, P.F.; Simek, M.; Rotolo, C.; Morano, M.; Minafra, A.; Ambrico, M.; Pollastro, S.; Gerin, D.; Faretra, F.; De Miccolis Angelini, R.M. Surface Dielectric Barrier Discharge Plasma: A Suitable Measure Against Fungal Plant Pathogens. Sci. Rep. 2020, 10, 3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.A.; Jones, D.G.; Dangl, J.L. Reactive Oxygen Species Signaling in Response to Pathogens. Plant Physiol. 2006, 141, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerana, M.; Yu, N.-N.; Ketya, W.; Park, G. Application of Non-Thermal Plasma to Fungal Resources. J. Fungi 2022, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.K.; Cho, J.; Tsai, T.C.; Staack, D.; Kang, M.H.; Roh, J.H.; Shin, D.B.; Cormwell, W.; Gross, D. A Non-Thermal Plasma Seed Treatment Method for Management of a Seedborne Fungal Pathogen on Rice Seed. Crop Sci. 2014, 54, 796–803. [Google Scholar] [CrossRef]
- Nishioka, T.; Takai, Y.; Kawaradani, M.; Okada, K.; Tanimoto, H.; Misawa, T.; Kusakari, S. Seed Disinfection Effect of Atmospheric Pressure Plasma and Low-Pressure Plasma on Rhizoctonia solani. Biocontrol Sci. 2014, 19, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus from Nut Surface with Low Pressure Cold Plasma (LPCP) Treatment. Food Microbiol. 2008, 25, 626–632. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Li, J.; Li, L.; He, X.; Shao, H.; Dong, Y. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE 2014, 9, e97753. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, T.; Takai, Y.; Mishima, T.; Kawaradani, M.; Tanimoto, H.; Okada, K.; Misawa, T.; Kurasaki, S. Low-Pressure Plasma Application for the Inactivation of the Seed-Borne Pathogen Xanthomonas campestris. Biocontrol Sci. 2016, 21, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Tucekova, Z.K.; Vacek, L.; Krumpolec, R.; Kelar, J.; Zemánek, M.; Cernsk, M.; Ruzicka, F. Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination. Molecules 2021, 26, 910. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive Species in Non-Equilibrium Atmospheric-Pressure Plasmas: Generation, Transport, and Biological Effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, R.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. Cold Atmospheric Plasma Activated Water as a Prospective Disinfectant: The Crucial Role of Peroxynitrite. Green Chem. 2018, 20, 5276–5284. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Raghavan, V. Nonthermal Plasma–Liquid Interactions in Food Processing: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1985–2008. [Google Scholar] [CrossRef] [Green Version]
- Philippe, S.; Souaibou, F.; Guy, A.; Sebastien, D.T.; Boniface, Y.; Paulin, A.; Issaka, Y.; Dominique, S. Chemical Composition and Antifungal Activity of Essential Oil of Fresh Leaves of Ocimum gratissimum from Benin Against Six Mycotoxigenic Fungi Isolated from Traditional Cheese Wagashi. Res. J. Biol. Sci. 2012, 1, 22–27. [Google Scholar]
- Kripalini, N.; Biswas, M.K.; Devi, S.; Sinha, B. Studies on Survey of Fusarium wilt of Pea (Pisum sativum L.) and Its Management by Native Trichoderma Isolates and Commercial Trichoderma under Pot Condition in Manipur. Int. J. Bio-Resour. Stress Manag. 2019, 10, 001–008. [Google Scholar] [CrossRef]
- Le, C.N.; Mendes, R.; Kruijt, M.; Raaijmakers, J.M. Genetic and Phenotypic Diversity of Sclerotium rolfsii in Groundnut Fields in Central Vietnam. Plant Dis. 2012, 96, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Lakpale, N.; Khare, N.; Thrimurty, V.S. Suppression of Sclerotium rolfsii Sacc.: An Integrated Approach. Soils Crops 2007, 17, 241–245. [Google Scholar]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib) de Bary: Biology and Molecular Traits of a CosmoPolitan Pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma Sterilization. Methods and Mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Polcic, P.; Machala, Z. Effects of Non-Thermal Plasma on Yeast Saccharomyces cerevisiae. Int. J. Mol. Sci. 2021, 22, 2247. [Google Scholar] [CrossRef]
- Volkov, A.G.; Xu, K.G.; Kolobov, V.I. Plasma-Generated Reactive Oxygen and Nitrogen Species Can Lead to Closure, Locking and Constriction of the Dionaea muscipula Ellis Trap. J. R. Soc. Interface 2019, 16, 20180713. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma Catalysis for Environmental Treatment and Energy Applications. Plasma Chem. Plasma Process. 2016, 36, 45–72. [Google Scholar] [CrossRef]
- Avramidis, G.; Stüwe, B.; Wascher, R.; Bellmann, M.; Wieneke, S.; von Tiedemann, A.; Viol, W. Fungicidal Effects of an Atmospheric Pressure Gas Discharge and Degradation Mechanisms. Surf. Coat. Technol. 2010, 205, S405–S408. [Google Scholar] [CrossRef]
- Panngom, K.; Lee, S.H.; Park, D.H.; Sim, G.B.; Kim, Y.H.; Uhm, H.S.; Park, G.; Choi, E.H. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host. PLoS ONE 2014, 9, e99300. [Google Scholar] [CrossRef] [PubMed]
- Julak, J.; Souskova, H.; Scholtz, V.; Kvasnickova, E.; Savicka, D.; Kriha, V. Comparison of Fungicidal Properties of Non-Thermal Plasma Produced by Corona Discharge and Dielectric Barrier Discharge. Folia Microbiol. 2018, 63, 63–68. [Google Scholar] [CrossRef]
Incubation Time | Percent of Inhibition (%) (±SD) * | |
---|---|---|
Mycelial Discs | Sclerotia | |
Non-treated control | 0 ± 0.00 c ** | 0 ± 0.00 d |
5 min | 30.83 ± 0.57 b | 55.75 ± 0.25 c |
10 min | 100.00 ± 0.00 a | 65.50 ± 0.50 b |
15 min | 100.00 ± 0.00 a | 67.75 ± 0.25 b |
20 min | 100.00 ± 0.00 a | 85.58 ± 0.14 a |
CV (%) | 0.39 | 0.51 |
p-value | 0.21 | 0.23 |
Treatment | Disease Incidence (%) (± SD) * | |||
---|---|---|---|---|
7 Days | 14 Days | |||
Mycelial Discs | Sclerotia | Mycelial Discs | Sclerotia | |
Healthy control | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 c *** | 0 ± 0.00 c |
Positive control (untreated) | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 a | 100 ± 0.00 a |
DBD plasma 5 min | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 a | 100 ± 0.00 a |
DBD plasma 10 min | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 a | 100 ± 0.00 a |
DBD plasma 15 min | 0 ± 0.00 | 0 ± 0.00 | 100 ± 0.00 a | 100 ± 0.00 a |
DBD plasma 20 min | 0 ± 0.00 | 0 ± 0.00 | 33.33 ± 50.00 b | 55.55 ± 52.70 b |
CV (%) | - ** | - | 28.26 | 28.34 |
p-value | - | - | 9.62 | 10.14 |
Treatment | Disease Severity Score * | |||
---|---|---|---|---|
7 Days | 14 Days | |||
Mycelial Discs | Sclerotia | Mycelial Discs | Sclerotia | |
Healthy control | 1 | 1 | 1 | 1 |
Positive control (untreated) | 5 | 5 | 5 | 5 |
DBD plasma 5 min | 5 | 5 | 5 | 5 |
DBD plasma 10 min | 5 | 5 | 5 | 5 |
DBD plasma 15 min | 1 | 2 | 1 | 4 |
DBD plasma 20 min | 1 | 1 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supakitthanakorn, S.; Ruangwong, O.-U.; Sawangrat, C.; Srisuwan, W.; Boonyawan, D. Potential of Nonthermal Atmospheric-Pressure Dielectric Barrier Discharge Plasma for Inhibition of Athelia rolfsii Causing Southern Blight Disease in Lettuce. Agriculture 2023, 13, 167. https://doi.org/10.3390/agriculture13010167
Supakitthanakorn S, Ruangwong O-U, Sawangrat C, Srisuwan W, Boonyawan D. Potential of Nonthermal Atmospheric-Pressure Dielectric Barrier Discharge Plasma for Inhibition of Athelia rolfsii Causing Southern Blight Disease in Lettuce. Agriculture. 2023; 13(1):167. https://doi.org/10.3390/agriculture13010167
Chicago/Turabian StyleSupakitthanakorn, Salit, On-Uma Ruangwong, Choncharoen Sawangrat, Wimada Srisuwan, and Dheerawan Boonyawan. 2023. "Potential of Nonthermal Atmospheric-Pressure Dielectric Barrier Discharge Plasma for Inhibition of Athelia rolfsii Causing Southern Blight Disease in Lettuce" Agriculture 13, no. 1: 167. https://doi.org/10.3390/agriculture13010167
APA StyleSupakitthanakorn, S., Ruangwong, O.-U., Sawangrat, C., Srisuwan, W., & Boonyawan, D. (2023). Potential of Nonthermal Atmospheric-Pressure Dielectric Barrier Discharge Plasma for Inhibition of Athelia rolfsii Causing Southern Blight Disease in Lettuce. Agriculture, 13(1), 167. https://doi.org/10.3390/agriculture13010167