Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Housing, Animals and Experimental Design
2.2. Experimental Diets
3. Data Collection
3.1. Egg Quality Analysis
3.2. Statistical Analysis
3.3. Determination of Ideal Amino Acid: Lys Ratios
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, F.; Shan, M.X.; Gao, X.; Yang, Y.; Yang, X.; Zhang, Y.Y.; Hu, J.W.; Shan, A.S.; Cheng, B.J. Effects of Nutrition Restriction of Fat- and Lean-Line Broiler Breeder Hens during the Laying Period on Offspring Performance. Blood Biochemical Parameters. and Hormone Levels. Domest. Anim. Endocrinol. 2019, 68, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, Y.; Yang, X.; Shan, M.; Gao, X.; Zhang, Y.; Hu, J.; Shan, A. Dietary Intake of Broiler Breeder Hens during the Laying Period Affects Amino Acid and Fatty Acid Profiles in Eggs. Rev. Bras. Zootec. 2019, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Güçlü, B.K.; Uyanik, F.; Işcan, K.M. Effects of Dietary Oil Sources on Egg Quality. Fatty Acid Composition of Eggs and Blood Lipids in Laying Quail. S. Afr. J. Anim. Sci. 2008, 38, 91–100. [Google Scholar]
- Li, F.; Xu, L.M.; Shan, A.S.; Hu, J.W.; Zhang, Y.Y.; Li, Y.H. Effect of Daily Feed Intake in Laying Period on Laying Performance. Egg Quality and Egg Composition of Genetically Fat and Lean Lines of Chickens. Br. Poult. Sci. 2011, 52, 163–168. [Google Scholar] [CrossRef]
- Guha, S.; Majumder, K.; Mine, Y. Egg Proteins. In Handbook of Food Proteins; Woodhead Publishing: Sawston, UK, 2011; pp. 74–84. [Google Scholar] [CrossRef]
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Amino Acid Requirements for Laying Hens: A Comprehensive Review. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef]
- Baláž, M.; Boldyreva, E.V.; Rybin, D.; Pavlović, S.; Rodríguez-Padrón, D.; Mudrinić, T.; Luque, R. State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis. Pharmaceutical Applications. and Mechanochemistry. Front. Bioeng. Biotechnol. 2021, 8, 612567. [Google Scholar] [CrossRef]
- Edwards, N.A.; Verna, L.; Nir, I. The secretion and synthesis of albumen by the magnum of the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. 1976, 53, 183–186. [Google Scholar] [CrossRef]
- Hurwitz, S.; Bornstein, S. The Protein and Amino Acid Requirements of Laying Hens: Suggested Models for Calculation. Poult. Sci. 1973, 52, 1124–1134. [Google Scholar] [CrossRef]
- Bornstein, S.; Hurwitz, S.; Lev, Y. The Amino Acid and Energy Requirements of Broiler Breeder Hens. Poult. Sci. 1979, 58, 104–116. [Google Scholar] [CrossRef]
- Fisher, H.; Johnson, D. The Amino Acid Requirement of Laying Hens. Poult. Sci. 1965, 44, 198–205. [Google Scholar] [CrossRef]
- Kim, E.; Wickramasuriya, S.S.; Shin, T.K.; Cho, H.M.; Kim, H.B.; Heo, J.M. Estimating Total Lysine Requirement for Optimised Egg Production of Broiler Breeder Hens during the Early-Laying Period. J. Anim. Sci. Technol. 2020, 62, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Ekmay, R.D.; Salas, C.; England, J.; Cerrate, S.; Coon, C.N. Lysine Partitioning in Broiler Breeders Is Not Affected by Energy or Protein Intake When Fed at Current Industry Levels. Poult. Sci. 2014, 93, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.M.; Swelum, A.A.; Hussein, E.O.S.; Elnesr, S.S. On Productive and Reproductive Performance. Egg Quality and Blood Biochemical Parameters. Animals 2020, 10, 1839. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Singh, A.K.; Wang, J.; Applegate, T. Functional Role of Branched Chain Amino Acids in Poultry: A Review. Poult. Sci. 2022, 101, 101715. [Google Scholar] [CrossRef]
- Ullah, S.; Ditta, Y.A.; King, A.J.; Pasha, T.N.; Mahmud, A.; Majeed, K.A. Varying Isoleucine Level to Determine Effects on Performance. Egg Quality. Serum Biochemistry. and Ileal Protein Digestibility in Diets of Young Laying Hens. PLoS ONE 2022, 17, e0261159. [Google Scholar] [CrossRef]
- Bai, J.; Greene, E.; Li, W.; Kidd, M.T.; Dridi, S. Branched-Chain Amino Acids Modulate the Expression of Hepatic Fatty Acid Metabolism-Related Genes in Female Broiler Chickens. Mol. Nutr. Food Res. 2015, 59, 1171–1181. [Google Scholar] [CrossRef]
- Ramalho de Lima, M.; Costa, F.G.P.; Guerra, R.R.; da Silva, J.H.V.; Rabello, C.B.V.; Miglino, M.A.; Lobato, G.B.V.; Netto, S.B.S.; Dantas, L.D.S. Threonine: Lysine Ratio for Japanese Quail Hen Diets. J. Appl. Poult. Res. 2013, 22, 260–268. [Google Scholar] [CrossRef]
- Lima, M.B.; Sakomura, N.K.; Silva, E.P.; Leme, B.B.; Malheiros, E.B.; Peruzzi, N.J.; Fernandes, J.B.K. Arginine Requirements for Maintenance and Egg Production for Broiler Breeder Hens. Anim. Feed Sci. Technol. 2020, 264, 114466. [Google Scholar] [CrossRef]
- Kalvandi, O.; Sadeghi, A.; Karimi, A. Arginine Supplementation Improves Reproductive Performance. Antioxidant Status. Immunity and Maternal Antibody Transmission in Breeder Japanese Quail under Heat Stress Conditions. Ital. J. Anim. Sci. 2022, 21, 8–17. [Google Scholar] [CrossRef]
- Kalvandi, O.; Sadeghi, A.; Karimi, A. Methionine Supplementation Improves Reproductive Performance. Antioxidant Status. Immunity and Maternal Antibody Transmission in Breeder Japanese Quail under Heat Stress Conditions. Arch. Anim. Breed. 2019, 62, 275–286. [Google Scholar] [CrossRef]
- Hanafy, A.M.; Attia, F.A.M. Productive and Reproductive Responses of Breeder Japanese Quails to Different Dietary Crude Protein and L-Valine Levels. Egypt. Poult. Sci. J. 2018, 38, 735–753. [Google Scholar] [CrossRef]
- Jiang, S.; El-Senousey, H.A.K.; Fan, Q.; Lin, X.; Gou, Z.; Li, L.; Wang, Y.; Fouad, A.M.; Jiang, Z. Effects of Dietary Threonine Supplementation on Productivity and Expression of Genes Related to Protein Deposition and Amino Acid Transportation in Breeder Hens of Yellow-Feathered Chicken and Their Offspring. Poult. Sci. 2019, 98, 6826–6836. [Google Scholar] [CrossRef] [PubMed]
- Samadi; Liebert, F. Modelling the Optimal Lysine to Threonine Ratio in Growing Chickens Depending on Age and Efficiency of Dietary Amino Acid Utilisation. Br. Poult. Sci. 2008, 49, 45–54. [Google Scholar] [CrossRef]
- Pastor, A.; Wecke, C.; Liebert, F. Assessing the Age-Dependent Optimal Dietary Branched-Chain Amino Acid Ratio in Growing Chicken by Application of a Nonlinear Modeling Procedure. Poult. Sci. 2013, 92, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Wecke, C.; Liebert, F. Improving the Reliability of Optimal In-Feed Amino Acid Ratios Based on Individual Amino Acid Efficiency Data from N Balance Studies in Growing Chicken. Animals 2013, 3, 558. [Google Scholar] [CrossRef] [Green Version]
- Soares, L.; Sakomura, N.K.; Dorigam, J.C.D.P.; Liebert, F.; Sunder, A.; Nascimento, M.Q.d.; Leme, B.B. Optimal In-Feed Amino Acid Ratio for Laying Hens Based on Deletion Method. J. Anim. Physiol. Anim. Nutr. 2019, 103, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorigam, J.C.P.; Sakomura, N.K.; Sarcinelli, M.F.; Gonçalves, C.A.; de Lima, M.B.; Peruzzi, N.J. Optimal In-Feed Amino Acid Ratio for Broiler Breeder Hens Based on Deletion Studies. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1194–1204. [Google Scholar] [CrossRef]
- De Lima, M.B.; de Sousa, M.G.B.L.; Minussi, A.R.T.; de Carvalho, L.C.; Veras, A.G.; Malheiros, E.B.; da Silva, E.P. Arginine Requirement for Japanese Quails. Poult. Sci. 2022, 101, 101841. [Google Scholar] [CrossRef]
- Rollin, X.; Mambrini, M.; Abboudi, T.; Larondelle, Y.; Kaushik, S.J. The Optimum Dietary Indispensable Amino Acid Pattern for Growing Atlantic Salmon (Salmo Salar L.) Fry. Br. J. Nutr. 2003, 90, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Rostagno, H.; Albino, L.F.; Donzele, J.; Gomes, P.; de Oliveira, R.; Lopes, D.; Ferreira, A.; Barreto, S.L.; Euclides, R. Tabelas Brasileiras Para Suínos e Aves: Composição de Alimentos e Exigências Nutricionais; Animal Science Department UFV: Viçosa, MG, Brazil, 2011; p. 252. [Google Scholar]
- Haugh, R.R. The Haugh unit for measuring egg quality. U. S. Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Funk, E.M. The relation of the Yolk Index Determined in Natural Position to the Yolk Index as Determined after Separating the Yolk from the Albumen. Poult. Sci. 1948, 27, 367. [Google Scholar] [CrossRef]
- Green, J.A.; Hardy, R.W.; Brannon, E.L. The Optimum Dietary Essential: Nonessential Amino Acid Ratio for Rainbow Trout (Oncorhynchus mykiss). Which Maximizes Nitrogen Retention and Minimizes Nitrogen Excretion. Fish Physiol. Biochem. 2002, 27, 109–115. [Google Scholar] [CrossRef]
- Morris, T.R.; Gous, R.M. Partitioning of The Response to Protein Between Egg Number And Egg Weight. Br. Poult. Sci. 1988, 29, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Bendezu, H.C.P.; Sakomura, N.K.; Hauschild, L.; da Silva, E.P.; Dorigam, J.C.D.P.; Malheiros, E.B.; Fernandes, J.B.K. Response of Laying Hens to Methionine + Cystine Intake by Dilution Technique. Rev. Bras. Zootec. 2015, 44, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.P.; Malheiros, E.B.; Sakomura, N.K.; Venturini, K.S.; Hauschild, L.; Dorigam, J.C.P.; Fernandes, J.B.K. Lysine Requirements of Laying Hens. Livest. Sci. 2015, 173, 69–77. [Google Scholar] [CrossRef]
- Silva, E.P.; Sakomura, N.K.; Oliveira, C.F.S.; Costa, F.G.P.; Dorigam, J.C.P.; Malheiros, E.B. The Optimal Lysine and Threonine Intake for Cobb Broiler Breeder Hens Using Reading Model. Livest. Sci. 2015, 174, 59–65. [Google Scholar] [CrossRef]
- Lima, M.B.; Sakomura, N.K.; Silva, E.P.; Dorigam, J.C.P.; Ferreira, N.T.; Malheiros, E.B.; Fernandes, J.B.K. The Optimal Digestible Valine. Isoleucine and Tryptophan Intakes of Broiler Breeder Hens for Rate of Lay. Anim. Feed Sci. Technol. 2018, 238, 29–38. [Google Scholar] [CrossRef]
- Sarcinelli, M.F.; Sakomura, N.K.; Dorigam, J.C.P.; Silva, E.P.; Venturini, K.S.; Lima, M.B.; Gonçalves, C.A. Modelling Japanese Quail Responses to Methionine + cystine. Threonine and Tryptophan Intake. Anim. Feed Sci. Technol. 2020, 263, 114486. [Google Scholar] [CrossRef]
- Silva, E.P.; Lima, M.B.; Sakomura, N.K.; Moraes, L.E.; Peruzzi, N.J. Weight Gain Responses of Laying-Type Pullets to Methionine plus Cystine Intake. Animal 2020, 14, s294–s302. [Google Scholar] [CrossRef]
- Silva, E.P.D.; Sakomura, N.K.; Sarcinelli, M.F.; Dorigam, J.C.D.P.; Venturini, K.S.; Lima, M.B.D. Modeling the Response of Japanese Quail Hens to Lysine Intake. Livest. Sci. 2019, 224, 69–74. [Google Scholar] [CrossRef]
- Fuller, M.F. Amino Acid Requirements for Maintenance. Body Protein Accretion and Reproduction in Pigs; CABI: Wallingford, UK, 1994. [Google Scholar]
- Cadirci, S.; Smith, W.K. The Effect of Body Weight of Laying Hens on the Intake of Methionine-Deficient Diet. In Proceedings of the 15th European Symposium on Poultry Nutrition, Balatonfüred, Hungary, 25–29 September 2005. [Google Scholar]
- Hincke, M.T.; Nys, Y.; Gautron, J. The Role of Matrix Proteins in Eggshell Formation. J. Poult. Sci. 2010, 47, 208–219. [Google Scholar] [CrossRef]
- Gautron, J.; Hincke, M.T.; Nys, Y. Precursor Matrix Proteins in the Uterine Fluid Change with Stages of Eggshell Formation in Hens. Connect. Tissue Res. 1997, 36, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Mann, M. Proteomic Analysis of Quail Calcified Eggshell Matrix: A Comparison to Chicken and Turkey Eggshell Proteomes. Proteome Sci. 2015, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- El-Tarabany, M.S. Impact of Cage Stocking Density on Egg Laying Characteristics and Related Stress and Immunity Parameters of Japanese Quails in Subtropics. J. Anim. Physiol. Anim. Nutr. 2016, 100, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M.; Vodeničarovová, M. Effects of Histidine Supplementation on Amino Acid Metabolism in Rats. Physiol. Res. 2020, 69, 99–111. [Google Scholar] [CrossRef]
- Kidd, M.T.; Loar, R.E. A Synopsis of Recent Work on the Amino Acid Nutrition of Layers. J. Appl. Poult. Res. 2021, 30, 100108. [Google Scholar] [CrossRef]
- Fisher, H.; Konlande, J.; Strumeyer, D. Levels of Histidine and Histidine Derivatives in Breast Muscle of Protein-Depleted and Repleted Adult Cockerels. Ann. Nutr. Metab. 1975, 18, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.R.; Baker, D.H.; Norton, H.W. Histidine Status in the Chick as Measured by Growth Rate. Plasma Free Histidine and Breast Muscle Carnosine. J. Nutr. 1977, 107, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Kudre, T.G.; Bejjanki, S.K.; Kanwate, B.W.; Sakhare, P.Z. Comparative Study on Physicochemical and Functional Properties of Egg Powders from Japanese Quail and White Leghorn Chicken. Int. J. Food Prop. 2018, 21, 956–971. [Google Scholar] [CrossRef] [Green Version]
- D’mello, J.P.F.; Lewis, D. Amino Acid Interactions in Chick Nutrition. Br. Poult. Sci. 1971, 12, 345–358. [Google Scholar] [CrossRef]
- Smith, T.K.; Austic, R.E. The Branched-Chain Amino Acid Antagonism in Chicks. J. Nutr. 1978, 108, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional Amino Acids in Growth. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayomy, H.M.; Rozan, M.A.; Mohammed, G.M. Nutritional Composition of Quail Meatballs and Quail Pickled Eggs. J. Nutr. Food Sci. 2017, 7, 1000584. [Google Scholar] [CrossRef]
- Friedman, M. Analysis. Nutrition. and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef] [Green Version]
- NRC1994. Nutrient Requirements of Poultry, 9th ed.; Washington: National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; de Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements; Animal Science Department UFV: Viçosa, Brazil, 2017; ISBN 9788560249725. [Google Scholar]
- Da Silva, J.H.V.; Costa, F.G.P. Tabela Para Codornas Japonesas e Européias; Funep: Jaboticabal, Brazil, 2009. [Google Scholar]
- Minvielle, F.; Oguz, Y. Effects of Genetics and Breeding on Egg Quality of Japanese Quail. Worlds. Poult. Sci. J. 2002, 58, 291–295. [Google Scholar] [CrossRef]
- Minvielle, F.; Monvoisin, J.L.; Costa, J.; Frenot, A. Quail Lines Selected on Egg Number Either on Pureline or on Crossbred Performance. In Proceedings of the Twelth Symposium of Current Problems in Avian Genetics (Aviagen), Prague, Czech Republic, 3–5 September 1997. [Google Scholar]
- Stino, F.K.R.; Kicka, M.A.; Kamar, G.A.; Altakreti, B.T.O. Egg Quality Traits of the Japanese Quail and Their Heritability in the Subtropics. Arch. Geflügelkd. 1985, 3, 104–108. [Google Scholar]
- Hegab, I.M.; Hanafy, A.M. Effect of Egg Weight on External and Internal Qualities. Physiological and Hatching Success of Japanese Quail Eggs (Coturnix japonica). Rev. Bras. Cienc. Avic. 2019, 21, 1–8. [Google Scholar] [CrossRef]
Item | Content, g/kg |
---|---|
Corn | 647.6 |
Soyabean meal (47%) | 120.8 |
Corn Gluten (60%) | 52.1 |
Dicalcium phosphate | 11.5 |
Limestone | 70.6 |
Sodium chloride | 3.4 |
Potassium chloride | 3.4 |
L-lysine (55%) | 3.8 |
DL-methionine (99%) | 9.5 |
L-threonine (98%) | 2.7 |
L-tryptophan | 1.0 |
L-arginine | 4.8 |
L-glycine | 1.3 |
L-valine | 1.3 |
L-histidine | 1.5 |
L-phenylalanine | 0.8 |
L-glutamate | 10.0 |
Choline chloride (60%) | 1.6 |
Premix—Vitaminic 1 | 0.2 |
Premix—Mineral 1 | 0.2 |
Item | Diets, g/kg | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lys | Met + Cys | Thr | Trp | Arg | Gly + Ser | Val | Ile | Leu | His | Phe + Tyr | |
Balanced protein | 600.0 | 600.0 | 596.9 | 598.6 | 596.4 | 590.0 | 600.0 | 596.6 | 597.6 | 600.0 | 600.0 |
Soy oil | 11.5 | 17.7 | 11.6 | 11.5 | 11.6 | 15.1 | 11.5 | 11.6 | 11.5 | 11.5 | 20.6 |
Dicalcium phosphate | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Limestone | 27.9 | 28.0 | 28.2 | 28.0 | 28.2 | 28.6 | 27.9 | 28.2 | 28.1 | 27.9 | 27.9 |
Sodium chloride | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Potassium chloride | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.9 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 |
DL-methionine (99%) | 3.6 | 0.0 | 3.7 | 3.6 | 3.7 | 3.7 | 3.6 | 3.7 | 3.6 | 3.6 | 3.6 |
L-lysine (55%) | 0.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.2 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
L-threonine (98%) | 2.7 | 2.7 | 0.0 | 2.7 | 2.7 | 2.7 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 |
L-tryptophan | 0.9 | 0.9 | 0.9 | 0.0 | 0.9 | 1.0 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
L-arginine | 5.2 | 5.2 | 5.2 | 5.2 | 0.0 | 5.2 | 5.2 | 5.2 | 5.2 | 5.1 | 5.1 |
L-valine | 3.4 | 3.3 | 3.4 | 3.3 | 3.4 | 3.4 | 0.0 | 3.4 | 3.3 | 3.3 | 3.3 |
L-isoleucine | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 2.9 | 0.0 | 2.9 | 2.9 | 2.9 |
L-leucine | 6.7 | 6.7 | 6.7 | 6.7 | 6.7 | 6.8 | 6.7 | 6.7 | 0.0 | 6.7 | 6.7 |
L-glycine | 5.1 | 5.1 | 5.1 | 5.1 | 5.2 | 0.0 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 |
L-phenylalanine | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.2 | 6.0 | 6.1 | 6.1 | 6.0 | 0.0 |
L-histidine | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 0.0 | 1.9 |
L-Glutamate | 54.1 | 47.8 | 54.0 | 45.3 | 61.7 | 55.1 | 54.0 | 47.4 | 51.8 | 48.5 | 49.1 |
Choline chloride (60%) | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
Corn starch | 100.0 | 51.3 | 100.0 | 100.0 | 100.0 | 54.4 | 99.1 | 100.0 | 100.0 | 99.1 | 48.0 |
Sugar | 65.1 | 100.0 | 65.0 | 68.3 | 58.2 | 100.0 | 62.6 | 70.7 | 72.7 | 65.7 | 100.0 |
Inert (cellulose) | 88.8 | 100.0 | 86.2 | 88.7 | 88.2 | 100.0 | 89.7 | 87.6 | 84.3 | 88.8 | 100.0 |
Premix—Vitaminic 2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Premix—Mineral 2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Items | Diets | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BP | Lys | Met + Cys | Thr | Trp | Arg | Gly + Ser | Val | Ile | Leu | His | Phe + Tyr | |
Metabolizable energy (MJ/kg) | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 |
Calcium (g/kg) | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
Avaliable phosphorus (g/kg) | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
Crude protein (g/kg) | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 | 180.1 |
Crude fiber (g/kg) | 18.8 | 11.3 | 11.3 | 11.2 | 11.3 | 11.2 | 11.3 | 11.1 | 11.2 | 11.2 | 11.3 | 11.3 |
Starch (g/kg) | 423.3 | 341.7 | 298.3 | 340.4 | 341.1 | 340.2 | 340.9 | 299.3 | 340.3 | 340.7 | 340.9 | 296.1 |
Crude fat (g/kg) | 33.9 | 31.8 | 37.9 | 31.7 | 31.7 | 31.7 | 31.8 | 37.2 | 31.7 | 31.7 | 31.8 | 40.8 |
NFE (g/kg) | 663.1 | 675.0 | 668.8 | 675.1 | 675.1 | 675.2 | 675.0 | 679.7 | 675.1 | 675.1 | 675.0 | 665.9 |
Lysine (g/kg) | 10.9 | 6.6 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 |
Metionine + Cystine (g/kg) | 9.0 | 9.0 | 5.4 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
Threonine (g/kg) | 6.6 | 6.6 | 6.6 | 3.9 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 |
Tryptophan (g/kg) | 2.3 | 2.3 | 2.3 | 2.3 | 1.4 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 |
Arginine (g/kg) | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 7.6 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 |
Glycine + serine (g/kg) | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 7.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 |
Valine (g/kg) | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 4.9 | 8.2 | 8.2 | 8.2 | 8.2 |
Isoleucine (g/kg) | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 4.2 | 7.1 | 7.1 | 7.1 |
Leucine (g/kg) | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 9.8 | 16.5 | 16.5 |
Histidine (g/kg) | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 2.7 | 4.6 |
Phenylalanine + Tyrosine (g/kg) | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 8.9 |
Amino Acid | Feed Intake (g/Bird Day−1) | Protein Intake (g/Bird Day−1) | Egg Mass (g Day−1) | FCR 1 (g/g) | FCR 2 (g/g) |
---|---|---|---|---|---|
Lysine | 18.62 b | 2.46 a | 4.15 b | 4.90 a | 1.87 b |
Met + Cys | 21.14 a | 2.58 a | 6.94 a | 3.13 a | 1.05 a |
Threonine | 18.83 b | 2.40 a | 5.09 b | 4.35 a | 1.62 a |
Tryptophan | 19.15 b | 2.56 a | 4.78 b | 4.41 a | 1.78 b |
Arginine | 19.05 b | 2.42 a | 5.79 a | 3.58 a | 1.17 a |
Gly + Ser | 22.43 a | 2.84 a | 6.71 a | 3.86 a | 1.28 a |
Valine | 14.78 b | 1.91 b | 3.81 b | 3.92 a | 2.08 b |
Isoleucine | 20.18 a | 2.53 a | 5.29 a | 3.83 a | 1.30 a |
Leucine | 21.39 a | 2.71 a | 6.66 a | 3.54 a | 1.31 a |
Histidine | 22.55 a | 2.77 a | 7.18 a | 3.36 a | 1.12 a |
Phe + Try | 20.39 a | 2.51 a | 6.63 a | 3.16 a | 1.24 a |
BP | 21.27 a | 2.61 a | 7.14 a | 3.09 a | 1.09 a |
Mean ± SE | 19.98 ± 1.82 | 2.53 ± 0.25 | 5.83 ± 1.79 | 3.77 ± 1.30 | 1.39 ± 0.42 |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0530 | <0.0001 |
Amino Acid | Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EW | ESW | ESP | AH | AD | AI | HU | YH | YD | YI | |
Lysine | 8.36 b | 0.64 b | 8.08 a | 3.53 a | 8.27 a | 0.42 a | 86.57 a | 7.40 a | 20.61 b | 0.36 a |
Met + Cys | 8.43 b | 0.64 b | 7.60 a | 4.39 a | 7.28 a | 0.59 a | 91.53 a | 7.97 a | 22.20 b | 0.36 a |
Threonine | 8.37 b | 0.55 b | 7.27 a | 4.49 a | 6.99 a | 0.62 a | 92.03 a | 7.89 a | 21.13 b | 0.37 a |
Tryptophan | 9.43 b | 0.65 b | 6.83 a | 4.17 a | 6.67 a | 0.54 a | 89.19 a | 7.38 a | 22.49 a | 0.33 a |
Arginine | 8.71 b | 0.65 b | 7.54 a | 4.00 a | 7.60 a | 0.53 a | 90.56 a | 7.71 a | 21.58 b | 0.35 a |
Gly + Ser | 9.22 b | 0.71 b | 7.76 a | 4.37 a | 7.59 a | 0.62 a | 90.52 a | 7.64 a | 22.39 a | 0.33 a |
Valine | 8.22 b | 0.54 b | 6.64 a | 3.81 a | 5.53 b | 0.70 a | 88.32 a | 7.76 a | 21.64 b | 0.35 a |
Isoleucine | 8.74 b | 0.62 b | 6.99 a | 4.10 a | 7.92 a | 0.53 a | 89.36 a | 7.85 a | 23.16 a | 0.34 a |
Leucine | 8.16 b | 0.68 b | 8.38 b | 4.50 a | 5.68 a | 0.79 b | 92.23 a | 8.20 a | 22.73 a | 0.36 a |
Histidine | 9.59 b | 0.73 a | 7.00 a | 4.05 a | 7.44 a | 0.49 a | 88.36 a | 7.44 a | 23.08 a | 0.32 a |
Phe + Try | 8.46 b | 0.66 b | 7.84 a | 4.29 a | 6.48 a | 0.61 a | 90.78 a | 7.98 a | 22.81 a | 0.36 a |
Balanced protein | 10.76 a | 0.84 a | 7.79 a | 4.07 a | 7.87 a | 0.52 a | 87.69 a | 8.22 a | 24.24 a | 0.34 a |
Mean ± SE | 8.86 ± 1.05 | 0.67 ± 0.10 | 7.53 ± 1.12 | 4.15 ± 0.69 | 7.09 ± 1.67 | 0.58 ± 0.19 | 89.62 ± 3.94 | 7.79 ± 0.62 | 22.34 ± 1.60 | 0.35 ± 0.03 |
p value | <0.0001 | <0.0001 | 0.0144 | 0.0530 | <0.0001 | 0.0009 | 0.0148 | 0.5218 | <0.0001 | 0.0176 |
Variables | EW | ESW | ||||||
---|---|---|---|---|---|---|---|---|
Yr | RDP | IAA | IAAR | Yr | RDP | IAA | IAAR | |
Lys | 22.30 | 3.15 | 1.06 | 100 | 23.32 | 13.82 | 0.94 | 100 |
Met + Cys | 21.69 | 4.16 | 0.86 | 82 | 23.45 | 13.68 | 0.78 | 83 |
Thr | 22.22 | 3.28 | 0.63 | 60 | 33.45 | 2.45 | 0.63 | 68 |
Trp | 12.36 | 19.57 | 0.18 | 18 | 22.53 | 14.72 | 0.2 | 21 |
Arg | 18.60 | 9.26 | 1.15 | 109 | 20.14 | 17.39 | 1.05 | 112 |
Gly + Ser | 14.39 | 16.22 | 1.05 | 99 | 14.90 | 23.28 | 0.96 | 102 |
Val | 23.61 | 0.98 | 0.81 | 77 | 35.64 | 0 | 0.82 | 87 |
Ile | 18.76 | 9 | 0.65 | 61 | 25.51 | 11.37 | 0.63 | 67 |
Leu | 24.21 | 0 | 1.64 | 155 | 18.59 | 19.13 | 1.33 | 141 |
His | 10.84 | 22.09 | 0.36 | 34 | 14.48 | 23.75 | 0.35 | 37 |
Phe + Tyr | 21.37 | 4.68 | 1.41 | 134 | 21.57 | 15.79 | 1.25 | 133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.C.; Malheiros, D.; Lima, M.B.; Mani, T.S.A.; Pavanini, J.A.; Malheiros, R.D.; Silva, E.P. Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder. Agriculture 2023, 13, 173. https://doi.org/10.3390/agriculture13010173
Carvalho LC, Malheiros D, Lima MB, Mani TSA, Pavanini JA, Malheiros RD, Silva EP. Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder. Agriculture. 2023; 13(1):173. https://doi.org/10.3390/agriculture13010173
Chicago/Turabian StyleCarvalho, Lizia C., Dimitri Malheiros, Michele B. Lima, Tatyany S. A. Mani, Jaqueline A. Pavanini, Ramon D. Malheiros, and Edney P. Silva. 2023. "Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder" Agriculture 13, no. 1: 173. https://doi.org/10.3390/agriculture13010173
APA StyleCarvalho, L. C., Malheiros, D., Lima, M. B., Mani, T. S. A., Pavanini, J. A., Malheiros, R. D., & Silva, E. P. (2023). Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder. Agriculture, 13(1), 173. https://doi.org/10.3390/agriculture13010173