Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields
Abstract
:1. Introduction
2. Material and Method
2.1. Experimental Site and Preparation of Jeevamrit
2.2. Contribution of Different Components of Jeevamrit on Microbial Growth
2.3. Sample Collection and Measurement of Soil Chemical Properties
2.4. Comparison of ZBNF Microbial Load with Farmer’s Field
2.5. DNA Extraction, Library Construction, and Metagenomic Sequencing
2.6. Analysis of Illumina Sequencing Reads
2.7. Isolation and Characterization of Plant-Growth-Promoting Activities of the Isolated Microbes
2.8. Statistical Analysis
3. Results
3.1. Effect of Jeevamrit on Soil Properties
3.2. Effect of Different Jeevamrit Constituents on Bacterial Count
3.3. Validation of Jeevamrit Application by Comparing ZBNF Soil Properties with Farmer’s Field
3.4. Metagenomics Analysis of ZBNF Field Soil
3.5. Taxonomic Composition of Bacteria in ZBNF Soil
3.6. Taxonomic Composition of Fungi in ZBNF Soil
3.7. Taxonomic Composition of Other Microbes in ZBNF Soil
3.8. COG Functional Annotation and Analysis
3.9. SEED Analysis and Annotation
3.10. Comparison of the ZBNF Field’s Microbial Abundance and Diversity with the Farmer’s Field
3.11. Identification and Characterization of Bacteria/Fungi in the ZBNF Field Soil
3.12. Economics of ZBNF Field and Crop Yield
4. Discussion
4.1. Jeevamrit Application Improved the Soil Properties
4.2. ZBNF Soil Has Rich Microbial Diversity
4.3. Microbes Improved the Soil Biology and Chemistry
4.4. Limitation/Weakness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bharucha, Z.P.; Mitjans, S.; Pretty, J. Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India. Int. J. Agric. Sustain. 2020, 18, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, C.; Banerjee, S.; Acharya, U.; Mitra, A.; Mallick, I.; Haldar, A.; Haldar, S.; Ghosh, A.; Ghosh, A. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 848–871. [Google Scholar] [CrossRef]
- Li, R.; Pang, Z.; Zhou, Y.; Fallah, N.; Hu, C.; Lin, W.; Yuan, Z. Metagenomic Analysis Exploring Taxonomic and Functional Diversity of Soil Microbial Communities in Sugarcane Fields Applied with Organic Fertilizer. Biomed. Res. Int. 2020, 2020, 9381506. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Khadse, A.; Rosset, P. Zero Budget Natural Farming in India–From inception to institutionalization. Desenvolv. Meio Ambient. 2021, 58, 579–603. [Google Scholar] [CrossRef]
- Maduka, C.M.; Udensi, C. Comparative analysis of the effect of some organic manure on soil microorganisms. Bionatura 2019, 4, 922–925. [Google Scholar] [CrossRef]
- Patel, J.S.; Kumar, G.; Bajpai, R.; Teli, B.; Rashid, M.; Sarma, B.K. Chapter 18–PGPR formulations and application in the management of pulse crop health. In Biofertilizers; Rakshit, A., Meena, V.S., Parihar, M., Singh, H.B., Singh, A.K., Eds.; Woodhead Publishing: New Delhi, India, 2021. [Google Scholar]
- Maougal, R.T.; Kechid, M.; Ladjabi, C.; Djekoun, A. PGPR Characteristics of Rhizospheric Bacteria to Understand the Mechanisms of Faba Bean Growth. Proceedings 2020, 66, 27. [Google Scholar]
- Nisrina, L.; Effendi, Y.; Pancoro, A. Revealing the role of Plant Growth Promoting Rhizobacteria in suppressive soils against Fusarium oxysporum f.sp. cubense based on metagenomic analysis. Heliyon 2021, 7, e07636. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Bunger, W.; Burbano, C.S.; Sabale, M.; Hurek, T. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annu. Rev. Phytopathol. 2015, 53, 403. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Yashavanth, B.S.; Meena, P.C.; Indoria, A.; Kundu, S.; Manjunath, M. Adoption of Natural Farming and Its Effect on Crop Yield and Farmers’ Livelihood in India; ICAR: New Delhi, India, 2020. [Google Scholar] [CrossRef]
- Munster, D. Performing alternative agriculture: Critique and recuperation in Zero Budget Natural Farming, South India. J. Polit. Ecol. 2018, 25, 748–764. [Google Scholar] [CrossRef] [Green Version]
- Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nut. 2013, 13, 638–649. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Li, D.H.; Liu, C.M.; Luo, R.B.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [Green Version]
- Dinesh, R.; Anandaraj, M.; Kumar, A.; Bini, Y.K.; Subila, K.P.; Aravind, R. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 2015, 173, 34–43. [Google Scholar] [CrossRef]
- Shang, L.; Wan, L.; Zhou, X.; Li, S.; Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE 2020, 15, e0240559. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
- Ding, J.L.; Jiang, X.; Guan, D.W.; Zhao, B.S.; Ma, M.C.; Zhou, B.K.; Cao, F.M.; Yang, X.H.; Li, L.; Li, J. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 2017, 111, 114–122. [Google Scholar] [CrossRef]
- Hernandez, M.; Dumont, M.G.; Yuan, Q.; Conrad, R. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon. Appl. Environ. Microb. 2015, 81, 2244–2253. [Google Scholar] [CrossRef]
- Lareen, A.; Burton, F.; Schafer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 2016, 90, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Kumar, J.; Abedin, M.M.; Sahoo, D.; Pandey, A.; Rai, A.K.; Singh, S.P. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol. 2020, 20, 246. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhu, L.; Wang, Y.J.; Zhang, S.; Liu, P.; Dong, T.T.X.; Wu, Q.N.; Duan, J.A. Comparative metagenomics analysis of the rhizosphere microbiota influence on Radix Angelica sinensis in different growth soil environments in China. Food Sci. Technol. 2021, 41, 775–784. [Google Scholar] [CrossRef]
- Sharma, S.B. Trend setting impacts of organic matter on soil physico-chemical properties in traditional vis -a- vis chemical-based amendment practices. PLoS Sustain. Transform. 2022, 1, e0000007. [Google Scholar] [CrossRef]
- Wang, Q.F.; Jiang, X.; Guan, D.W.; Wei, D.; Zhao, B.S.; Ma, M.C.; Chen, S.F.; Li, L.; Cao, F.M.; Li, J. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Appl. Soil Ecol. 2018, 125, 88–96. [Google Scholar] [CrossRef]
- De Souza, R.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Deluz, C.; Nussbaum, M.; Sauzet, O.; Gondret, K.; Boivin, P. Evaluation of the Potential for Soil Organic Carbon Content Monitoring With Farmers. Front. Environ. Sci. 2020, 8, 113. [Google Scholar] [CrossRef]
- Dhawi, F. Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sci. 2020, 15, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, S.L. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol. 2017, 3, 335–353. [Google Scholar] [CrossRef]
- Kopecky, J.; Kyselkova, M.; Omelka, M.; Cermak, L.; Novotna, J.; Grundmann, G.L.; Moenne-Loccoz, Y.; Sagova-Mareckova, M. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol. Ecol. 2011, 78, 386–394. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
- Han, S.H.; An, J.Y.; Hwang, J.; Kim, S.B.; Park, B.B. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. For. Sci. Technol. 2016, 12, 137–143. [Google Scholar]
- Adekiya, A.O.; Ogunboye, O.I.; Ewulo, B.S.; Olayanju, A. Effects of Different Rates of Poultry Manure and Split Applications of Urea Fertilizer on Soil Chemical Properties, Growth, and Yield of Maize. Science 2020, 2020, 4610515. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mader, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.C.; Zhou, J.; Ongena, M.; Liu, W.Z.; Wei, D.; Zhao, B.S.; Guan, D.W.; Jiang, X.; Li, J. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of Chinese Mollisols. Amb. Express 2018, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.C.; Li, H.Y.; Lin, Z.A.; Zhao, B.Q.; Sun, Z.B.; Yuan, L.; Xu, J.K.; Li, Y.Q. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci. Rep. 2020, 10, 7198. [Google Scholar] [CrossRef]
Block | Organic Carbon (%) | Available Phosphorus (kg/ha) | Available Potash (kg/ha) | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|
Shahabad | 0.34 ± 0.21 b | 6.74 ± 2.64 a | 295 ± 68.92 b | 2.61 ± 0.93 a | 2.56 ± 0.64 a | 44.74 ± 8.11 a | 6.24 ± 0.62 b |
Babain | 0.37 ± 0.18 b | 7.71 ± 1.98 a | 269 ± 46.67 b | 2.15 ± 0.80 a | 2.26 ± 0.68 a | 42.06 ± 11.14 a | 6.9 ± 1.66 b |
Ladwa | 0.46 ± 0.26 a | 5.67 ± 3.32 b | 439 ± 98.95 a | 2.49 ± 1.30 a | 2.6 ± 0.53 a | 22.90 ± 11.68 c | 7.33 ± 1.39 a |
Thanesar | 0.43 ± 0.10 a | 5.94 ± 2.85 b | 479 ± 78.88 a | 1.98 ± 1.45 b | 2.06 ± 0.41 a | 40.44 ± 9.15 b | 6.11 ± 2.10 b |
Copping System | Year | Microbial Count |
---|---|---|
ZBNF | ||
Moong-sugarcane | 2017 | 76 ± 0.23 × 107 b |
Sugarcane | 2018 | 66 ± 0.70 × 108 a |
Hybrid Rice | 2019 | 37 ± 0.15 × 107 c |
Wheat | 2019 | 63 ± 0.23 × 107 b |
Local farmer field | ||
Sorghum | 2017 | 12 ± 0.90 × 105 d |
Rice | 2018 | 10 ± 0.73 × 105 d |
Rice | 2019 | 12 ± 0.32 × 105 d |
Wheat | 2019 | 21 ± 0.23 × 105 e |
Test Name | * Bacterial Isolates | * Fungal Isolates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ZBNF_B1 | ZBNF_B2 | ZBNF_B3 | ZBNF_B4 | ZBNF_B5 | ZBNF_F1 | ZBNF_F2 | ZBNF_F3 | ZBNF_F4 | ZBNF_F5 | |
Phosphate solubilization | + | +++ | ++ | +++ | - | +++ | + | ++ | - | +++ |
HCN production | - | - | ++ | +++ | - | - | - | - | + | - |
Ammonia production | +++ | ++ | - | ++ | - | - | - | ++ | - | + |
IAA production | +++ | +++ | ++ | ++ | + | - | ++ | ++ | + | - |
Siderophore production | ++ | ++ | _ | ++ | +++ | - | - | ++ | +++ | - |
Starch Hydrolysis | ++ | +++ | + | ++ | ++ | ++ | + | ++ | - | ++ |
Biological nitrogen fixation | ++ | +++ | ++ | + | ++ | - | - | - | - | - |
Antifungal activity | ++ | - | + | ++ | ++ | ND | ND | ND | ND | ND |
Chitinase production | +++ | - | +++ | ++ | + | |||||
Morphology | Cocci | Rods | rods | cocci | spiral | white cottony and dark purple undersurface | blue-green with a suede-like surface consisting of a dense felt of conidiophores | white cottony and dark purple undersurface | blue-green with a suede-like surface consisting of a dense felt of conidiophores | intracellular hyphae with large amounts of electron-dense globules |
Gram Staining | -ve | +ve | +ve | -ve | -ve | NA | NA | NA | NA | NA |
Endospore staining | -ve | -ve | -ve | +ve | -ve | ND | ND | ND | ND | ND |
Citrate utilization | +ve | -ve | -ve | +ve | -ve | ND | ND | ND | ND | ND |
H2S production | -ve | +ve | +ve | -ve | +ve | ND | ND | ND | ND | ND |
Protease activity | + | +++ | ++ | - | + | + | ++ | ND | - | + |
Catalase test | + | ++ | ++ | + | +++ | ++ | + | ++ | + | + |
Indole test | - | ++ | + | - | + | ND | ND | ND | ND | ND |
Methyl red test | + | + | ++ | - | + | ND | ND | ND | ND | ND |
Nitrate reduction test | ++ | - | + | - | + | ND | ND | ND | ND | ND |
VP test | + | + | - | - | - | ND | ND | ND | ND | ND |
Sucrose fermentation | + | - | - | + | + | + | ++ | + | - | ++ |
Crop/Variety | Yield (q/ha) | Cost of Cultivation (Rs./ha) | Total Return (Rs./ha) | Net Return (Rs./ha) | Benefit–Cost Ratio |
---|---|---|---|---|---|
Non-scented Rice Varieties (PR114) | |||||
Gurukul Farm | 74.45 | 30,150 | 130,575 | 100,425 | 4.33 |
Farmer’s field | 66.75 | 43,405 | 112,485 | 69,080 | 2.59 |
Scented Rice Variety (CSR30) | |||||
Gurukul Farm | 32.50 | 35,000 | 148,700 | 113,700 | 4.25 |
Farmer’s field | 30.50 | 48,750 | 102,550 | 53,800 | 2.10 |
Wheat Varieties | |||||
Gurukul Farm (Var. Bansi) | 32.30 | 27,280 | 131,500 | 104,220 | 4.82 |
Farmer’s Field (Var. HD2967) | 48.00 | 34,760 | 83,115 | 48,355 | 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saharan, B.S.; Tyagi, S.; Kumar, R.; Vijay; Om, H.; Mandal, B.S.; Duhan, J.S. Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. Agriculture 2023, 13, 196. https://doi.org/10.3390/agriculture13010196
Saharan BS, Tyagi S, Kumar R, Vijay, Om H, Mandal BS, Duhan JS. Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. Agriculture. 2023; 13(1):196. https://doi.org/10.3390/agriculture13010196
Chicago/Turabian StyleSaharan, Baljeet Singh, Swati Tyagi, Robin Kumar, Vijay, Hari Om, Balwan Singh Mandal, and Joginder Singh Duhan. 2023. "Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields" Agriculture 13, no. 1: 196. https://doi.org/10.3390/agriculture13010196
APA StyleSaharan, B. S., Tyagi, S., Kumar, R., Vijay, Om, H., Mandal, B. S., & Duhan, J. S. (2023). Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. Agriculture, 13(1), 196. https://doi.org/10.3390/agriculture13010196