The Influence of Sewage Sludge and Fly Ash Fertilization on the Total Number of Bacteria (TNB) and Bradyrhizobium Species in Soybean Agroecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Soil
2.3. Sewage Sludge and Fly Ash Properties
- Sewage sludge: pH 6.8; λ 2250 µS·cm−1; total content of heavy metals in mg·kg−1: Fe 27,060; Cu 95.6; Zn 1054; Pb 95.2; Cd 3.6; Cr 81.0; Ni 21.2; Hg 2.25; χ 564 × 10−8·m3·kg−1.
- Fly ash: pH 11.8; λ 2970 µS·cm−1; total content of heavy metals in mg·kg−1: Fe 49,390; Cu 145.0; Zn 760.0; Pb 296.0; Cd 3.8; Cr 60.0; Ni 73.0; Hg 1.55; χ 729 × 10−8·m3·kg−1.
2.4. Soybean
2.5. Biological Tests
- (a)
- From the collected soil samples, 5 g were taken and suspended in 45 mL of physiological saline and shaken for 20 min. A series of tenfold dilutions were made and spread onto TSA (tryptic soy agar). The culture was grown at 30 °C for 48 h. The colonies from individual dilutions in the tested samples were counted and the results were given as the mean of replicates ± SD in colony-forming units (cfu) per 1 g of fresh soil mass. The experiment was carried out in six replicates.
- (b)
- The number of colonies formed in the plates was enumerated and the average number of the colony-forming unit (CFU/g and CFU/root nodule) was calculated using the following formula [32]:
3. Results and Discussion
4. Conclusions
- The efficiency of soybean cultivation is related to the inclusion of chemical and biological methods in the agricultural technology cycle. In such a system of cultivation, the application of fertilizers and soil conditioners should be subordinated to the biological activity of the habitat, mainly due to the economics of production and the quality of the environment.
- The transformation processes of organic matter in the soil of the experimental treatments caused the quantitative differentiation of the fractions of HS depending on the applied fertilization variant. The highest content of HA was detected in the soil treated with fly ash.
- The application of sewage sludge and fly ash in the experimental treatments did not result in the amount of heavy metals exceeding the limit values for uncontaminated soils. In comparison to the control, a significant enrichment in iron, zinc and chrome of soil fertilized with sewage sludge, fly ash and fly ash treatments was detected. The lowest Hg content was observed in a treatment with fly ash only, with significant differences between those containing this element.
- Negative values of correlation coefficients (higher than −0.7) between lead and other elements from the group of heavy metals and TOC content may indicate that the source of these elements was primarily the fly ash used in the experiment.
- The coexistence of Fe with Zn and Cr and a significant positive correlation between them, magnetic susceptibility and TOC may indicate that sewage sludge and fly ash can be sources of ferromagnetic agents.
- The results showed large physiological diversity and resistance of microorganisms, including Bradyrhizobium, to heavy metals in the applied fertilization variants.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bednarczyk, M.; Pisarek, I. A sustainable development for soya production based on field research carried out in the variety assessment experimental station of Glubczyce in years 2015–2017. Econ. Environ. Stud. 2018, 18, 1219–1233. [Google Scholar] [CrossRef]
- Dobek, T.K.; Dobek, M. Effectiveness of soybean production under the conditions of Poland (in Polish). Agric. Eng. 2008, 4, 233–240. Available online: https://bibliotekanauki.pl/articles/291262 (accessed on 14 April 2020).
- Hama, J.R.; Kolpin, D.W.; LeFevre, G.H.; Hubbard, L.E.; Powers, M.M.; Strobel, B.W. Exposure and transport of alkaloids and phytoestrogens from soybeans to agricultural soils and streams in the Midwestern United States. Environ. Sci. Technol. 2021, 55, 11029–11039. [Google Scholar] [CrossRef] [PubMed]
- Wenda-Piesik, A.; Ambroziak, K. The choice of soybean cultivar alters the underyielding of protein and oil under drought conditions in Central Poland. Appl. Sci. 2022, 12, 7830. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaffine, D.T. Microclimate effects of wind farms on local crop yields. J. Environ. Econ. Manag. 2019, 96, 159–173. [Google Scholar] [CrossRef]
- Pisarek, I.; Grata, K. The influence of the organic matter of sewage sediments on biological activity of microorganisms which carry out the transformations of carbon and nitrogen compounds. Pol. J. Microbiol. 2013, 62, 445–452. [Google Scholar] [CrossRef]
- Pisarek, I. The Influence of Sewage Sludge on the Direction of the Humic Substances Transformation and Some Soil Fertility of the Cambisol Developed from Silt (in Polish); University of Opole Press: Opole, Poland, 2007; p. 130. [Google Scholar]
- Pisarek, I.; Glowacki, M.; Czernia, M. The impact of Pleurotus ostreatus on organic matter transformation processes. Water Pollut. Res. 2012, 66, 2666–2673. [Google Scholar] [CrossRef]
- Nakano, K.; Matsumura, M. Utilization of dehydrated sewage sludge as an alternative nutrient to stimulate lipid waste degradation by the thermophilic toxic process. J. Biosci. Bioeng. 2002, 94, 113–118. [Google Scholar] [CrossRef]
- Wlasniewski, S. Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Environ. Prot. Nat. Resour. 2009, 41, 479–488. [Google Scholar] [CrossRef]
- Evans, M.E.; Heller, F. Magnetism in the biosphere. Int. Geophys. 2003, 86, 185–210. [Google Scholar] [CrossRef]
- Dytlow, S.K.; Gorka-Kostrubiec, B. Magnetic parameters as an indicator of the processes occurring in the degraded Chernozem developed in loess from Miechow area. Sci. Rev. Eng. Env. Sci. 2014, 64, 170–184. Available online: http://iks_pn.sggw.pl/eng_mp.html (accessed on 14 April 2020).
- Zawadzki, J.; Magiera, T.; Fabijanczyk, P.; Kusza, G. Geostatical 3-dimensional integration of measurements of soil magnetic susceptibility. Environ. Monit Assess 2012, 184, 3267–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenta, B.A.; Driscoll, S.P.; Kunert, K.J.; Foyer, C.H. Characterization of drought-tolerance traits in nodulated soya beans: The importance of maintaining photosynthesis and shoot biomass under drought-induced limitations on nitrogen metabolism. J. Agron. Crop Sci. 2012, 198, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S.; Kropkowski, M.; Kledzik, R. Identifying climatic risk to soybean cultivation in the transitional type of moderate climate in Central Poland. J. Cent. Eur. Agric. 2019, 20, 143–156. [Google Scholar] [CrossRef]
- Viteri, S.E.; Schmidt, E.L. Ecology of indigenous soil rhizobia: Selective response of Bradyrhizobium japonicum to a soybean meal. Appl. Soil Ecol. 1996, 3, 187–195. [Google Scholar] [CrossRef]
- Berninger, T.; Lopez, O.G.; Bejarano, A.; Preininger, C.; Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 2018, 11, 12880. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, M.; Swedrzynska, D. Analysis of the interactions of microorganisms in soil environment (in Polish). Kosmos 2016, 65, 49–55. Available online: http://kosmos.icm.edu.pl/PDF/2016/49.pdf (accessed on 14 April 2020).
- Jaroslawiecka, A.; Piotrowska-Seget, Z. Lead resistance in microorganisms. Microbiology 2014, 160, 12–25. [Google Scholar] [CrossRef]
- Smith, C.R.; Blair, P.L.; Boyd, C.; Cody, B.; Hazel, A.; Hedrick, A.; Kathuria, H.; Khurana, P.; Kramer, B.; Muterspaw, K.; et al. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol. Evol. 2016, 6, 8075–8084. [Google Scholar] [CrossRef]
- Young, I.M.; Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000, 53, 201–213. [Google Scholar] [CrossRef]
- Agri, U.; Chaudhary, P.; Sharma, A.; Kukreti, B. Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant Soil 2022, 474, 451–468. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Chaudhary, A.; Khati, P.; Gangola, S.; Maithani, D. Illumina based high throughput analysis of microbial diversity of maize rhizosphere treated with nanocompounds and Bacillus sp. Appl. Soil Ecol. 2021, 159, 103836. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chaudhary, A.; Bhatt, P.; Kumar, G.; Khatoon, H.; Rani, A.; Kumar, S.; Sharma, A. Assessment of Soil Health Indicators Under the Influence of Nanocompounds and Bacillus spp. in Field Condition. Front. Environ. Sci. 2022, 9, 769871. [Google Scholar] [CrossRef]
- Tu, T.-C.; Lin, S.-H.; Shen, F.-T. Enhancing symbiotic nitrogen fixation and soybean growth through co-inoculation with Bradyrhizobium and Pseudomonas isolates. Sustainability 2021, 13, 11539. [Google Scholar] [CrossRef]
- Cadore, L.S.; Vey, R.T.; Fresinghelli, J.C.F.; Dotto, L.; Mendes, F.B.; Silva, A.C.F. Trichoderma and Bradyrhizobium japonicum bioformulates bioformulates on soy initial growth. Cienc. Nat. Santa Maria 2020, 42, e22. [Google Scholar] [CrossRef]
- Röskeą, V.M.; Guimarăes, V.F.; Brito, T.S.; Lerner, A.W.; Junior, R.C.; Silva, A.S.L.; Ankla, M.A. Inoculation and co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in soybean crop with the use of soil bioactivator. Commun. Plant Sci. 2022, 12, 24–32. [Google Scholar]
- Jabborova, D.P.; Enakiev, Y.I.; Davranov, K.D.; Begmatov, S.A. Effect of co-inoculation with Bradyrhizobium japonicum and Pseudomonas putida on root morph-architecture traits, nodulation and growth of soybean in response to phosphorus supply under hydroponic conditions. Bulg. J. Agric. Sci. 2018, 24, 1004–1011. [Google Scholar]
- Bulegon, G.L.; Guimarăes, V.F.; Klein, J.; Battistus, A.G.; Inagaki, A.M.; Offemann, L.C.; Souza, A.K.P. Enzymatic activity, gas exchange and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense. AJCS 2017, 11, 888–896. [Google Scholar] [CrossRef]
- Carro, L.; Menendez, E. Knock, knock-let the bacteria in enzymatic potential of plant associated bacteria. In Molecular Aspects of Plant Beneficial Microbes in Agriculture, 1st ed.; Sharma, V., Salwan, R., Tawfeeq, L., Eds.; Academic Press; Elsevier: London, UK, 2020; Chapter 13; pp. 169–178. [Google Scholar]
- Arana, I.; Orruńo, M.; Barcina, I. How to solve practical aspects of microbiology. In Part 2: Basic Methods for Microbial Enumeration; University of Basque Country: Biscay, Spain, 2013. [Google Scholar]
- Grata, K.; Rombel-Bryzek, A.; Ziembik, Z. Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea. Ecol. Chem. Eng. S 2019, 26, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Saeed, Q.; Xiukang, W.; Haider, F.U.; Kučerik, J.; Mumtaz, M.Z.; Holatko, J.; Naseem, M.; Kintl, A.; Ejaz, M.; Naveed, M. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 2021, 22, 10529. [Google Scholar] [CrossRef] [PubMed]
- Moliszewska, E.B.; Pisarek, I. Influence of humic substances on the growth of two phytopathogenic soil fungi. Environ. Int. 1996, 22, 579–582. [Google Scholar] [CrossRef]
- Pisarek, I. Characterization of humic substances formed in soil fertilized with sewage sludge and cattle manure. Humic Subst. Ecosyst. 2003, 5, 93–99. Available online: https://scholar.google.pl (accessed on 14 April 2020).
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.; Gunaratne, T.; Bandara, L.; Weerasundara, L.; Rajakaruna, N.; Seneviratne, G.; Vithanage, M. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South Afr. J. Bot. 2016, 105, 19–24. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 2007, 70, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xu, Y.; Li, C.; Shi, L.; Wen, L.; Li, W.; Cheng, K.; Xiao, X. Effects of different long-term fertilizer management systems on soi microbial biomass turnover in a double-cropping rice field in Southern Cina. Agriculture 2022, 12, 1662. [Google Scholar] [CrossRef]
- Humate solubility determination. In American Colloid Company Procedure 3009; American Colloid Company: Hoffman Estates, IL, USA, 1998.
- Goluchowska, B.; Strzyszcz, Z.; Kusza, G. Magnetic susceptibility and heavy metal content in dust from the lime plant and cement plant in Opole voivodship. Arch. Environ. Prot. 2012, 38, 71–80. [Google Scholar] [CrossRef]
- Graham, P.H. Selective medium for growth of Rhizobium. Appl. Microbiol. 1969, 17, 769–770. [Google Scholar] [CrossRef]
- Penna, C.; Massa, R.; Olivieri, F.; Gutkind, G.; Cassán, F. A simple method to evaluate the number of Bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 2011, 19, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; p. 507. Available online: https://www.crcpress.com (accessed on 14 April 2020).
- Polacco, J.C.; Mazzafera, P.; Tezotto, T. Opinion—Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 2013, 199–200, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Senesi, N.; Loffredo, N. Interaction with metals. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 101–112. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Petrov, P.; Tsacheva, T. Soil development of three Chernozem-like profi les from North Bulgaria revealed by magnetic studies. Catena 2010, 83, 158–169. [Google Scholar] [CrossRef]
- Aijun, Y.; Changle, Q.; Shusen, M.; Reardon, E.J. Effects of humus on the environmental activity of mineral-bound Hg: Influence on Hg volatility. Appl. Geochem. 2006, 21, 446–454. [Google Scholar] [CrossRef]
- Rombel-Bryzek, A.; Pisarek, I. The effect of humic acids on metabolic activity of sugar beet under drought conditions (in Polish). Proc. ECOpole 2017, 11, 279–286. [Google Scholar] [CrossRef]
- Chen, Y.; Aviad, T. Effects of Humic Substances on plant growth. In Humic Substances in Soil and Crop Sciences: Selected Readings; MacCarthy, P., Clapp, C.E., Malcolm, R.L., Bloom, P.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1990; Chapter 7; pp. 161–186. [Google Scholar] [CrossRef]
- Florent, P.; Chauchie, H.M.; Herold, M.; Jacquet, S.; Ogorzaly, L. Soil pH, calcium content and bacteria as major factors responsible for the distribution of the known fraction of the DNA bacteriphage populations in soils of Luxemburg. Microorganisms 2022, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.; Lauber, C.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, X.; Guo, D.; Zhao, J.; Yan, L.; Feng, G.; Gao, Q.Y.H.; Zhao, L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern. Ann. Microbiol. 2019, 69, 1461–1473. [Google Scholar] [CrossRef]
No of Treatment | Total Content of Elements on Average [mg·kg−1] | χ [×10−8·m3·kg−1] (fd in%) | pH | Conductivity [µS·cm−1] λ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Cu | Zn | Pb | Cd | Cr | Ni | Hg | ||||
1 | 1.9 | 17.4 | 56.2 | 51.0 | 0.541 | 25.0 | 15.7 | 0.233 | 34 (2.3) | 5.0 | 96.0 |
2 | 2.1 | 17.9 | 59.1 | 51.8 | 0.473 | 26.4 | 14.2 | 0.349 | 38 (4.7) | 5.2 | 103.0 |
3 | 2.3 | 20.3 | 57.9 | 40.4 | 0.591 | 25.3 | 13.3 | 0.254 | 34.1 (4.7) | 5.5 | 103.5 |
4 | 2.5 | 18.9 | 59.8 | 37.8 | 0.574 | 26.7 | 15.2 | 0.260 | 65.8 (2.5) | 5.9 | 155.1 |
5 | 2.4 | 18.6 | 60.8 | 34.1 | 0.574 | 25.3 | 14.5 | 0.236 | 49 (4.8) | 6.6 | 259.0 |
6 | 2.5 | 17.9 | 58.1 | 36.3 | 0.693 | 25.7 | 15.5 | 0.230 | 52.4 (4.8) | 6.7 | 226.0 |
LSD | 0.21 | 7.68 | 1.59 | 9.78 | 0.06 | 0.62 | 0.83 | 0.04 | 11.48 | 0.65 | 64.12 |
Number of Treatments | TOC [g·kg−1] | SH | HA | HA/FA |
---|---|---|---|---|
[%] | ||||
1 | 10.69 | 28.4 | 14.06 | 0.98 |
2 | 11.17 | 28.6 | 13.71 | 0.92 |
3 | 11.01 | 28.2 | 13.74 | 0.95 |
4 | 14.73 | 34.15 | 17.96 | 1.11 |
5 | 13.82 | 35.05 | 18.23 | 1.16 |
6 | 13.95 | 35.03 | 17.94 | 1.05 |
LSD | 2.26 | 4.40 | 2.91 | 0.12 |
Feature | Bradyrhizobium | TNB |
---|---|---|
TOC | 0.90 | 0.36 |
Fe | 0.57 | ns |
Pb | −0.66 | ns |
Cr | ns | 0.89 |
Cd | 0.65 | ns |
Ni | 0.77 | 0.38 |
Hg | −0.64 | −0.43 |
pH | 0.69 | ns |
χ | 0.68 | 0.60 |
Λ | 0.79 | ns |
No. of Treatments | TNB (cfu/g) | Bradyrhizobium (cfu/Root Nodule) | ||
---|---|---|---|---|
1 | 2.74 × 107 ± 0.72 | B | 4.22 × 103 ± 0.45 | b |
2 | 4.75 × 107 ± 1.73 | B | 0.92 × 103 ± 0.05 | b |
3 | 1.13 × 108 ± 1.74 | A | 1.09 × 103 ± 0.36 | b |
4 | 6.82 × 107 ± 3.15 | C | 6.72 × 103 ± 0.35 | a |
5 | 1.09 × 108 ± 3.87 | A | 5.26 × 103 ± 2.67 | c |
6 | 3.14 × 107 ± 1.34 | B | 7.18 × 103 ± 2.69 | a |
Feature | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X | Y | ||||||||||
Fe | Cu | Zn | Pb | Cd | Cr | Ni | Hg | χ | pH | λ | |
Fe | |||||||||||
Cu | 0.43 | ||||||||||
Zn | 0.57 | ns | |||||||||
Pb | −0.79 | −0.43 | ns | ||||||||
Cd | 0.67 | ns | ns | −0.78 | |||||||
Cr | 0.38 | ns | 0.51 | Ns | ns | ||||||
Ni | ns | 0.77 | ns | Ns | ns | ns | |||||
Hg | ns | 0.52 | 0.64 | 0.78 | −0.73 | 0.61 | 0.42 | ||||
χ | 0.789 | ns | 0.65 | −0.57 | 0.39 | 0.62 | 0.41 | ns | |||
pH | 0.84 | ns | 0.57 | −0.80 | 0.74 | ns | ns | −0.47 | 0.63 | ||
λ | 0.70 | ns | 0.65 | −0.70 | 0.58 | ns | ns | −0.46 | 0.57 | 0.96 | |
TOC | 0.79 | ns | 0.66 | −0.70 | 0.52 | 0.49 | 0.48 | −0.40 | 0.95 | 0.79 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarek, I.; Grata, K. The Influence of Sewage Sludge and Fly Ash Fertilization on the Total Number of Bacteria (TNB) and Bradyrhizobium Species in Soybean Agroecosystem. Agriculture 2023, 13, 201. https://doi.org/10.3390/agriculture13010201
Pisarek I, Grata K. The Influence of Sewage Sludge and Fly Ash Fertilization on the Total Number of Bacteria (TNB) and Bradyrhizobium Species in Soybean Agroecosystem. Agriculture. 2023; 13(1):201. https://doi.org/10.3390/agriculture13010201
Chicago/Turabian StylePisarek, Izabella, and Katarzyna Grata. 2023. "The Influence of Sewage Sludge and Fly Ash Fertilization on the Total Number of Bacteria (TNB) and Bradyrhizobium Species in Soybean Agroecosystem" Agriculture 13, no. 1: 201. https://doi.org/10.3390/agriculture13010201
APA StylePisarek, I., & Grata, K. (2023). The Influence of Sewage Sludge and Fly Ash Fertilization on the Total Number of Bacteria (TNB) and Bradyrhizobium Species in Soybean Agroecosystem. Agriculture, 13(1), 201. https://doi.org/10.3390/agriculture13010201