The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Waterlogged Areas—Specification and Data Source
2.3. Hyperspectral Data
2.4. Spectral Indices
2.5. Modelling
- Finding correlation of input layers and removing highly correlated variables for all territories and each period separately; for our purposes, a value of 0.7 was chosen. Correlation was performed via the freely downloadable ArcGIS SDMToolkit extension.
- A set of detection points (centroids of waterlogged areas) and representative uncorrelated rasters from the previous step were prepared for each territory and each period.
- Using the Enmevaluate tool [53] in the R statistical program environment, variants of the input settings of the MAXENT program were tested precisely according to the procedure described on the website of the Integrative Evolutionary and Conservation Biology Lab (https://sites.google.com/site/thebantalab/). The best input parameters were those with the lowest Akaike information criterion (AIC) value. The result was a correlation parameter (linear, quadratic, combined, threshold, step, or combined) and a regularization parameter.
- The MAXENT application was set according to the results of the previous step and launched.
The Method of Processing Results from the MAXENT Application
- All cases, regardless of period and location;
- Spring period, regardless of location;
- Autumn period, regardless of location;
- Site 1 alone, regardless of the period;
- Site 1 alone in spring and autumn;
- The year 2020 alone.
3. Results
4. Discussion
5. Conclusions
- For the identification of wetland areas, only some of the commonly used hyperspectral indices can be used. In this regard, chlorophyll-based indices worked best for us, with a higher amount of chlorophyll representing a higher probability of a wetland area.
- Although chlorophyll-based indices can be used regardless of the season, better results were achieved in springtime with the NVI index, which represents indices focusing on LAI. A higher probability of occurrence corresponded to low LAI values, indicating low leaf coverage.
- The overall sensitivity of the best indices is statistically significant but does not reach high values. This shows that the use of remote sensing is suitable for the primary selection of wetland areas, which must still be verified in the field.
- The research shows that the exact determination of waterlogged areas in the agricultural landscape is not easy, especially when there is a lack of available hyperspectral data. Such data are not yet readily available in the Czech Republic or other countries. Only recently have the DESIS spectroradiometer on the ISS [77] and two hyperspectral satellites, the Italian PRISMA [78] and the German EnMAP [79], started to supply hyperspectral data. Together with the proposed Copernicus satellite mission CHIME with global coverage [80], we expect hyperspectral data to become more important for various land surface applications. An alternative could be the use of multispectral data using available satellites. However, practical use of such data, due to the lower sensitivity of spectral indices, will be the subject of further research.
- A valuable result, although difficult to interpret biologically, is the role of LAI expressed by the NVI index and the role of chlorophyll in identifying wetland areas. Interpretation cannot be achieved at the level of remote sensing, and further research based on field experiments will be necessary for clarification.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Trnka, M.; Brázdil, R.; Vizina, A.; Dobrovolný, P.; Mikšovský, J.; Štěpánek, P.; Hlavinka, P.; Řezníčková, L.; Žalud, Z. Droughts and Drought Management in the Czech Republic in a Changing Climate. In Drought and Water Crises, 2nd ed.; Wilhite, D.A., Pulwarty, R.S., Eds.; Integrating Science, Management, and Policy; CRC Press: Boca Raton, FL, USA; Taylor & Francis: UK, 2017; pp. 461–480. ISBN 978-1-138-03564-5. [Google Scholar] [CrossRef]
- Brázdil, R.; Rezníčková, L.; Valášek, H.; Havlíček, M.; Dobrovolný, P.; Soukalová, E.; Rehánek, T.; Skokanová, H. Fluctuations of Floods of the River Morava (Czech Republic) in the 1691–2009 Period: Interactions of Natural and Anthropogenic Factors. Hydrol. Sci. J. 2011, 56, 468–485. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Možný, M.; Štěpánek, P.; Dobrovolný, P.; Zahradníček, P.; Balek, J.; Semerádová, D.; Dubrovský, M.; Hlavinka, P.; et al. Soil Moisture Trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 2015, 35, 3733–3747. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed Changes in Precipitation during Recent Warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Pavelková, R.; Frajer, J.; Havlíček, M.; Netopil, P.; Rozkošný, M.; David, V.; Dzuráková, M.; Šarapatka, B. Historical Ponds of the Czech Republic: An Example of the Interpretation of Historic Maps. J. Maps 2016, 12, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Kulhavý, Z.; Doležal, F.; Fučík, P.; Kulhavý, F.; Kvítek, T.; Muzikář, R.; Soukup, M.; Švihla, V. Management of Agricultural Drainage Systems in the Czech Republic. Irrig. Drain. 2007, 56, S141–S149. [Google Scholar] [CrossRef]
- Kulhavý, Z.; Žaloudík, J.; Tlapáková, L.; Burešová, Z.; Eichler, J.; Čmelík, M. Identification of Subsurface Drainage Systems by Air Photographs. In Proceedings of the ICID 21st European Regional Conference, Frankfurt, Germany; Slubice, Poland, 15–19 May 2005. [Google Scholar]
- Němec, R.; Dřevojan, P.; Šumberová, K. Wetlands on Arable Land in Znojmo Region as a Refuge of Important and Rare Vascular Plants. Thayensia 2014, 11, 3–76. [Google Scholar]
- Churko, G.; Gramlich, A.; Walter, T. Vascular Plant and Ground Beetle Diversity on Wet Arable Land versus Conventional Crop Fields. Basic Appl. Ecol. 2021, 53, 86–99. [Google Scholar] [CrossRef]
- Sychra, J.; Čamlík, G.; Merta, L.; Zavadil, V.; Devánová, A. Temporal Field Wetlands as Biodiversity Hot Spots in Agricultural Landscape in the Czech Republic. In Proceedings of the 10 Symposium for European Freshwater Sciences, Olomouc, Czech Republic, 2–7 July 2017. [Google Scholar]
- Wu, Q. GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. Compr. Geogr. Inf. Syst. 2018, 3, 140–157. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A Review on Reflective Remote Sensing and Data Assimilation Techniques for Enhanced Agroecosystem Modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A Comparative Analysis of Broadband and Narrowband Derived Vegetation Indices in Predicting LAI and CCD of a Cotton Canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Gamon, J.A.; Somers, B.; Malenovský, Z.; Middleton, E.M.; Rascher, U.; Schaepman, M.E. Assessing Vegetation Function with Imaging Spectroscopy. Surv. Geophys. 2019, 40, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation. Int. J. Remote Sens. 2010, 25, 3999–4014. [Google Scholar] [CrossRef]
- Ray, D.; Behera, M.D.; Jacob, J. Evaluating Ecological Niche Models: A Comparison Between Maxent and GARP for Predicting Distribution of Hevea Brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1337–1343. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In Proceedings of the IEEE International Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2. [Google Scholar]
- Fitzpatrick, M.C.; Gove, A.D.; Sanders, N.J.; Dunn, R.R. Climate Change, Plant Migration, and Range Collapse in a Global Biodiversity Hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Chang. Biol. 2008, 14, 1337–1352. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L. Potential Changes in the Distributions of Latitudinally Restricted Australian Butterfly Species in Response to Climate Change. Glob. Chang. Biol. 2002, 8, 954–971. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the 21st International Conference on Machine Learning—ICML ’04, Banff, AB, Canada, 4–8 July 2004; Volume 83. [Google Scholar] [CrossRef] [Green Version]
- Hanuš, J.; Fabiánek, T.; Fajmon, L. Potential of Airborne Imaging Spectroscopy at Czechglobe. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 15–17. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-Based Hyperspectral Imagery and Machine Learning Algorithms for Soil Moisture Content Monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An Investigation into Robust Spectral Indices for Leaf Chlorophyll Estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Tian, Y.; Yao, X.; Yang, J.; Cao, W.; Zhu, Y. Extracting Red Edge Position Parameters from Ground- and Space-Based Hyperspectral Data for Estimation of Canopy Leaf Nitrogen Concentration in Rice. Plant Prod. Sci. 2015, 14, 270–281. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of Crop LAI Using Hyperspectral Vegetation Indices and a Hybrid Inversion Method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Martínez, M.; Martínez, M.E.; Martínez, E.; Renza, D. Detection of Changes in Natural Aquifer Reservoirs Based on the Index of Drought. IEEE Lat. Am. Trans. 2017, 15, 2059–2063. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Wang, L.; Qu, J.J.; Hao, X. Remote Sensing of Fuel Moisture Content from Canopy Water Indices and Normalized Dry Matter Index. J. Appl. Remote. Sens. 2012, 6, 061705. [Google Scholar] [CrossRef]
- Barnes, E.; Colaizzi, P.; Haberland, J.; Waller, P. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Qiao, C.; Luo, J.; Sheng, Y.; Shen, Z.; Zhu, Z.; Ming, D. An Adaptive Water Extraction Method from Remote Sensing Image Based on NDWI. J. Indian Soc. Remote Sens. 2012, 40, 421–433. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vijayan, D.; Prasad, T.S. New Hyperspectral Vegetation Characterization Parameters. Adv. Space Res. 2001, 28, 201–206. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing Community Type, Plant Biomass, Pigment Composition, and Photosynthetic Efficiency of Aquatic Vegetation from Spectral Reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de La Haute Resolution Spectrale Pour Suivre l’etat Des Couverts Vegetaux. J. Chem. Inf. Model 1988, 53, 279–286. [Google Scholar]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 2007, 14, 1563–1575. [Google Scholar] [CrossRef]
- McCall, D.S.; Zhang, X.; Sullivan, D.G.; Askew, S.D.; Ervin, E.H. Enhanced Soil Moisture Assessment Using Narrowband Reflectance Vegetation Indices in Creeping Bentgrass. Crop. Sci. 2017, 57, S161–S168. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; González, V.-B. MaxEnt’s Parameter Configuration and Small Samples: Are We Paying Attention to Recommendations? A Systematic Review. PeerJ 2017, 2017, e3093. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological Niche Modeling in Maxent: The Importance of Model Complexity and the Performance of Model Selection Criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Fiener, P.; Dostál, T.; Krása, J.; Schmaltz, E.; Strauss, P.; Wilken, F. Operational USLE-Based Modelling of Soil Erosion in Czech Republic, Austria, and Bavaria—Differences in Model Adaptation, Parametrization, and Data Availability. Appl. Sci. 2020, 10, 3647. [Google Scholar] [CrossRef]
- Šarapatka, B.; Štěrba, O. Optimization of Agriculture in Relation to the Multifunctional Role of the Landscape. Landsc. Urban Plan 1998, 41, 145–148. [Google Scholar] [CrossRef]
- Skokanová, H.; Netopil, P.; Havlíček, M.; Šarapatka, B. The Role of Traditional Agricultural Landscape Structures in Changes to Green Infrastructure Connectivity. Agric. Ecosyst. Environ. 2020, 302, 107071. [Google Scholar] [CrossRef]
- Krasa, J.; Dostal, T.; van Rompaey, A.; Vaska, J.; Vrana, K. Reservoirs’ Siltation Measurments and Sediment Transport Assessment in the Czech Republic, the Vrchlice Catchment Study. Catena 2005, 64, 348–362. [Google Scholar] [CrossRef]
- Richter, P. Mokřady Na Archivních Mapových Podkladech. Vodohospodářské Tech. Ekon. Inf. 2020, 62, 30–37. [Google Scholar] [CrossRef]
- Pavelková Chmelová, R.; Frajer, J.; Netopil, P.; David, V.; Dzuráková, M.; Havlíček, M.; Hůla, P.; Peterková, L.; Rozkošný, M.; Šarapatka, B.; et al. Historické Rybníky České Republiky: Srovnání Současnosti Se Stavem v 2. Polovině 19. Století., 1st ed.; Výzkumný ústav vodohospodářský, T.G. Masaryka: Praga, Czech Republic, 2014; Volume 1. [Google Scholar]
- Kim, M.S. The Use of Narrow Spectral Bands for Improving Remote Sensing Estimations of Fractionally Absorbed Photosynthetically Active Radiation (Fapar). Master’s Thesis, University of Maryland, College Park, MD, USA, 1994. [Google Scholar]
- Liang, L.; Huang, T.; Di, L.; Geng, D.; Yan, J.; Wang, S.; Wang, L.; Li, L.; Chen, B.; Kang, J. Influence of Different Bandwidths on LAI Estimation Using Vegetation Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1494–1502. [Google Scholar] [CrossRef]
- Fischer, R.A. The Effect of Water Stress at Various Stages of Development on Yield Processes in Wheat. Plant Response Clim. Factors 1973, 1973, 233–241. [Google Scholar]
- Sarker, A.M.; Rahman, M.S.; Paul, N.K. Effect of Soil Moisture on Relative Leaf Water Content, Chlorophyll, Proline and Sugar Accumulation in Wheat. J. Agron. Crop. Sci. 1999, 183, 225–229. [Google Scholar] [CrossRef]
- Sampathkumar, T.; Pandian, B.J.; Jeyakumar, P.; Manickasundaram, P. Effect of Deficit Irrigation on Yield, Relative Leaf Water Content, Leaf Proline Accumulation and Chlorophyll Stability Index of Cotton-Maize Cropping Sequence. Exp. Agric. 2014, 50, 407–425. [Google Scholar] [CrossRef]
- Blackman, S.A.; Obendorf, R.L.; Leopold, A.C. Desiccation Tolerance in Developing Soybean Seeds: The Role of Stress Proteins. Physiol. Plant 1995, 93, 630–638. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xie, Z.K.; Wang, Y.J.; Su, P.X.; An, L.P.; Gao, H. Effect of Water Stress on Leaf Photosynthesis, Chlorophyll Content, and Growth of Oriental Lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm Review: Leaf Area Index (LAI) Is Both a Determinant and a Consequence of Important Processes in Vegetation Canopies. For. Ecol. Manag. 2020, 477, 118496. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Ganguly, S.; Zhang, G.; Hofton, M.A.; Nelson, R.F.; Dubayah, R. Characterizing Leaf Area Index (LAI) and Vertical Foliage Profile (VFP) over the United States. Biogeosciences 2016, 13, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards Modeling Leaf Optical Properties through a Complete Lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M.; Froelich, N.J.; Chen, B.; Staebler, R.M. Seasonal Controls of Canopy Chlorophyll Content on Forest Carbon Uptake: Implications for GPP Modeling. J. Geophys. Res. Biogeosci. 2015, 120, 1576–1586. [Google Scholar] [CrossRef]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Singh, P.; Singh, R.K. Investigation of Optimal Vegetation Indices for Retrieval of Leaf Chlorophyll and Leaf Area Index Using Enhanced Learning Algorithms. Comput. Electron. Agric. 2022, 192, 106581. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Wei, X.; Liu, Y.; Zhan, Y.; Xia, M.; Yao, Y.; Zhang, X. Improving Leaf Area Index Estimation Accuracy of Wheat by Involving Leaf Chlorophyll Content Information. Comput. Electron. Agric. 2022, 196, 106902. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and Validation of Hyperspectral Indices for the Estimation of Broadleaved Forest Leaf Chlorophyll Content, Leaf Mass per Area, Leaf Area Index and Leaf Canopy Biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Krutz, D.; Müller, R.; Knodt, U.; Günther, B.; Walter, I.; Sebastian, I.; Säuberlich, T.; Reulke, R.; Carmona, E.; Eckardt, A.; et al. The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 1622. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. Int. Geosci. Remote Sens. Symp. IGARSS 2018, 2018, 175–178. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). Int. Geosci. Remote Sens. Symp. IGARSS 2018, 2018, 157–159. [Google Scholar] [CrossRef]
Location | Campaign | Shooting Time | Relative Water Saturation of Soil * | Drought Intensity ** |
---|---|---|---|---|
1 | 30 April 2016 | 10:43–11:53 | 70 ± 20 | 0 |
1 | 27 August 2016 | 10:36–12:34 | 55 ± 5 | 0 |
1 | 19 May 2017 | 14:13–15:09 | 65 ± 25 | 0 |
1 | 30 August 2017 | 11:20–13:34 | 35 ± 5 | 0 |
2 | 21 August 2020 | 10:14–11:31 | 55 ± 10 | 0 |
3 | 21 August 2020 | 10:14–11:31 | 50 ± 10 | 0 |
4 | 21 August 2020 | 10:14–11:31 | 45 ± 5 | 0 |
Spectral Index | Formula | Scale | Sensitivity | Reference(s) |
---|---|---|---|---|
CARI | Leaf | Chl | [25] | |
DVI | Leaf, soil | WC | [26] | |
EVI | Canopy | LAI | [27] | |
GNDVI | Canopy | Chl a | [28] | |
MCARI | Canopy | Chl, LAI | [29] | |
MCARI/ OSAVI | MCARI/OSAVI | Canopy | Chl, LAI | [30] |
mNDVI705 | Leaf | Chl, LAI, WC | [31] | |
MSAVI | Canopy | Chl | [32] | |
MTVI1 | Canopy | LAI | [30] | |
MTVI2 | Canopy | LAI | [28] | |
NDCI | Lakes | Chl a | [33] | |
NDDI | Soil | SM | [34] | |
NDMI | Soil | DMC | [35] | |
NDRE | Canopy | Chl, LAI | [36] | |
NDVI | Canopy | Chl, LAI | [37] | |
NDVI705 | Leaf | Chl a | [38] | |
NDWI | Water bodies, canopy, soil | WC | [39] | |
NMDI | Soil, canopy | SM, WC | [40] | |
NVI | Leaf | LAI | [41] | |
OSAVI | Canopy, soil | Chl, SM | [42] | |
PRI | Canopy | LAI | [43] | |
RDVI | Canopy | Chl, LAI | [44] | |
REP | Leaf | Chl | [45] | |
RVI | Canopy | Chl | [31] | |
SPVI | Canopy | Chl, LAI | [25] | |
TCARI | Canopy | Chl | [30] | |
TCARI_ OSAVI | TCARI/OSAVI | Canopy | Chl | [30] |
TCARI2 | Canopy | Chl | [46] | |
TVI | Canopy | LAI, Chl | [47] | |
VOG1 | Leaf | Chl, LAI, WC | [48] | |
VOG2 | Leaf | Chl, LAI, WC | [48] | |
VOG3 | Leaf | Chl, LAI, WC | [48] | |
WI | Soil | WC | [43] | |
WI/NDVI | Canopy, soil | Chl, LAI, WC | [49] |
Case | Locality | Period | AUC | Relation | rm |
---|---|---|---|---|---|
1 | 1 | Spring 2016 | 0.792 ± 0.235 | LQH | 2 |
2 | 1 | Autumn 2016 | 0.667 ± 0.233 | L | 3 |
3 | 1 | Spring 2017 | 0.715 ± 0.275 | LQH | 2 |
4 | 1 | Autumn 2017 | 0.733 ± 0.307 | L | 1 |
5 | 2 | Autumn 2020 | 0.661 ± 0.258 | H | 1 |
6 | 3 | Autumn 2020 | 0.608 ± 0.291 | H | 1 |
7 | 4 | Autumn 2020 | 0.619 ± 0.337 | LQH | 1 |
Index | Spring 2016 | Autumn 2016 | Spring 2017 | Autumn 2017 | Autumn 2020_1 | Autumn 2020_2 | Autumn 2020_3 | Average Contribution |
---|---|---|---|---|---|---|---|---|
Cari | 5.7 | 55.0 | 37.8 | 7.6 | 14.5 | 33.7 | 29.9 | 26.3 ± 16.6 |
Dvi | 10.1 | 44.8 | 30.2 | 6.6 | 12.9 | 29.9 | 26.2 | 23.0 ± 12.7 |
Evi | 0.0 | 0.0 | 0.0 | 0.0 | 37.6 | 0.0 | 0.0 | 5.4 ± 13.2 |
Mcari | 0.4 | 40.6 | 26.7 | 92.4 | 14.5 | 25.6 | 22.3 | 31.8 ± 27.2 |
mtvi2 | 1.1 | 0.0 | 0.8 | 5.7 | 0.0 | 62.3 | 21.1 | 13.0 ± 21.3 |
Ndmi | 9.2 | 0.5 | 1.6 | 0.0 | 10.6 | 0.0 | 2.2 | 3.4 ± 4.2 |
Nmdi | 27.7 | 0.0 | 6.9 | 0.0 | 8.4 | 2.1 | 0.0 | 6.4 ± 9.3 |
Nvi | 54.8 | 0.0 | 26.2 | 6.6 | 36.4 | 0.0 | 0.0 | 17.7 ± 20.2 |
Osavi | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21.3 | 3.1 ± 7.4 |
Pri | 0.1 | 0.1 | 19.5 | 5.9 | 10.6 | 27.6 | 25.7 | 12.8 ± 10.7 |
Rdvi | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21.5 | 3.1 ± 7.5 |
tcari2 | 41.6 | 3.9 | 18.8 | 82.7 | 0.0 | 1.9 | 21.1 | 24.3 ± 27.4 |
wi_indvi | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 46.8 | 6.7 ± 16.4 |
Index | a | b | c | d | d1 | d2 | e |
---|---|---|---|---|---|---|---|
cari | ** 26.3 | * 21.8 | ** 28.1 | * 26.5 | * 21.8 | *** 66.5 | ** 26.0 |
dvi | 23.0 | 20.1 | * 24.1 | 22.9 | 20.1 | 0.0 | 23.0 |
evi | 5.4 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 12.5 |
mcari | *** 31.8 | 13.6 | *** 39.1 | *** 40.0 | 13.6 | * 31.3 | 20.8 |
mtvi2 | 13.0 | 1.0 | 17.8 | 1.9 | 1.0 | 0.0 | *** 27.8 |
ndmi | 3.4 | 5.4 | 2.7 | 2.8 | 5.4 | 3.3 | 4.3 |
nmdi | 6.4 | 17.3 | 2.1 | 8.7 | 17.3 | 3.0 | 3.5 |
nvi | 17.7 | *** 40.5 | 8.6 | 21.9 | *** 40.5 | 0.3 | 12.1 |
osavi | 3.1 | 0.2 | 4.3 | 0.1 | 0.2 | * 43.3 | 7.1 |
pri | 12.8 | 9.8 | 14.0 | 6.4 | 9.8 | 2.9 | * 21.3 |
rdvi | 3.1 | 0.1 | 4.3 | 0.0 | 0.1 | 0.0 | 7.2 |
tcari2 | * 24.3 | ** 30.2 | 21.9 | ** 36.7 | ** 30.2 | 25.7 | 7.7 |
wi_indvi | 6.7 | 0.0 | 9.4 | 0.0 | 0.0 | 0.0 | 15.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednář, M.; Šarapatka, B.; Netopil, P.; Zeidler, M.; Hanousek, T.; Homolová, L. The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic. Agriculture 2023, 13, 287. https://doi.org/10.3390/agriculture13020287
Bednář M, Šarapatka B, Netopil P, Zeidler M, Hanousek T, Homolová L. The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic. Agriculture. 2023; 13(2):287. https://doi.org/10.3390/agriculture13020287
Chicago/Turabian StyleBednář, Marek, Bořivoj Šarapatka, Patrik Netopil, Miroslav Zeidler, Tomáš Hanousek, and Lucie Homolová. 2023. "The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic" Agriculture 13, no. 2: 287. https://doi.org/10.3390/agriculture13020287
APA StyleBednář, M., Šarapatka, B., Netopil, P., Zeidler, M., Hanousek, T., & Homolová, L. (2023). The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic. Agriculture, 13(2), 287. https://doi.org/10.3390/agriculture13020287