Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize
Abstract
:1. Introduction
- (1)
- identifying the correlation between crop production and weather parameters (i.e., rainfall and temperature);
- (2)
- determining the feature importance of each weather parameter on crop production, and;
- (3)
- identifying the best MLM for the prediction of crop production.
2. Materials and Methods
2.1. Study Area
2.2. Methodology Adopted
2.2.1. Crops Production Data
2.2.2. Weather Data
Rainfall
Air Temperature
2.3. Machine Learning Models
2.3.1. Random Forest
2.3.2. Polynomial Regression
2.3.3. Support Vector Regression
2.4. Models Evaluation
2.5. Hyper-Parameters Tuning
2.6. Cross Validation
3. Results
3.1. Prediction Results
3.2. Variables Importance
3.3. Correlation between Weather Variables and Crops Yield
3.4. Comparative Analysis of the Models
4. Discussion
4.1. Crops Growing Stages and Climate Requirements
4.1.1. Climate Requirements for the Irish Potatoes and Their Impacts on the Production
4.1.2. Climate Requirements for the Maize and Their Impact on the Production
4.2. Prediction and Models Performance
5. Conclusions
Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A.Q. Impact of climate change on agriculture: Empirical evidence from arid region, Pakistan. J. Agric. Sci. 2011, 48, 327–333. [Google Scholar]
- Molden, D.; Vithanage, M.; de Fraiture, C.; Faures, J.M.; Gordon, L.; Molle, F.; Peden, D. Water Availability and Its Use in Agriculture. Treatise Water Sci. 2011, 4, 707–732. [Google Scholar] [CrossRef]
- Keen, B.A. Weather and crops. Q. J. R. Meteorol. Soc. 1940, 66, 155–166. [Google Scholar] [CrossRef]
- Javadinejad, S.; Eslamian, S.; Askari, K.O.A. The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. Int. J. Hydrol. Sci. Technol. 2021, 11, 1–25. [Google Scholar] [CrossRef]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of extreme weather conditions on European crop production in 2018: Random forest—Yield anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190510. [Google Scholar] [CrossRef]
- Uleberg, E.; Hanssen-Bauer, I.; van Oort, B.; Dalmannsdottir, S. Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Clim. Change 2014, 122, 27–39. [Google Scholar] [CrossRef]
- Yadav, M.R.; Choudhary, M.; Singh, J.; Lal, M.K.; Jha, P.K.; Udawat, P.; Gupta, N.K.; Rajput, V.D.; Garg, N.K.; Maheshwari, C.; et al. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int. J. Mol. Sci. 2022, 23, 2838. [Google Scholar] [CrossRef]
- Gallego, A.; Carrión, M.C.; Ruiz, D.P.; Medouri, A. The relationship between AR-modelling bispectral estimation and the theory of linear prediction. Signal Process 1994, 37, 381–388. [Google Scholar] [CrossRef]
- US AID. Climate Change Risk Profile: Philippines. 2017, pp. 1–4. Available online: https://www.climatelinks.org/sites/default/files/asset/document/2017_Climate_Change_Risk_Profile_Philippines.pdf (accessed on 2 February 2022).
- EastAfrican. 3000 Rwandan Families Face Hunger due to Drought—Rwanda|ReliefWeb, (n.d.). Available online: https://reliefweb.int/report/rwanda/3000-rwandan-families-face-hunger-due-drought (accessed on 3 February 2022).
- Kironde, E.G. Rwanda State of Environment and Outlook Report. In REMA; 2016; 1, pp. 93–115. Available online: https://www.rema.gov.rw/soe/chap9.php (accessed on 3 February 2022).
- Chakraborty, D.; Saha, S.; Sethy, B.K.; Singh, H.D.; Singh, N.; Sharma, R.; Chanu, A.N.; Walling, I.; Anal, P.R.; Chowdhury, S.; et al. Usability of the Weather Forecast for Tackling Climatic Variability and Its Effect on Maize Crop Yield in Northeastern Hill Region of India. Agronomy 2022, 12, 2529. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.R.; Anderson, M.C. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [Green Version]
- Nishant, P.S.; Venkat, P.S.; Avinash, B.L.; Jabber, B. Crop Yield Prediction based on Indian Agriculture using Machine Learning. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 5–8. [Google Scholar] [CrossRef]
- Reddy, D.; Kumar, M.R. Crop Yield Prediction using Machine Learning Algorithm. In Proceedings of the 2021 5th International Conference on Computational Intelligence in Information Systems (CIIS 2022), Madurai, India, 6–8 May 2021; pp. 1466–1470. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote. Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Kumar, Y.J.N.; Spandana, V.; Vaishnavi, V.; Neha, K.; Devi, V. Supervised Machine learning Approach for Crop Yield Prediction in Agriculture Sector. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 736–741. [Google Scholar] [CrossRef]
- Rugimbana, C. Predicting Maize (Zea Mays) Yields in Eastern Province of Rwanda Using Aquacrop Model. University of Nairobi. 2019. Available online: https://ccafs.cgiar.org/resources/publications/predicting-maize-zea-mays-yields-eastern-province-rwanda-using-aquacrop (accessed on 29 December 2022).
- Ngaruye, I.; von Rosen, D.; Singull, M. Crop yield estimation at district level for agricultural seasons 2014 in Rwanda. Afr. J. Appl. Stat. 2016, 3, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Breure, M.S.; Kempen, B.; Hoffland, E. Spatial predictions of maize yields using QUEFTS—A comparison of methods. Geoderma 2022, 425, 116018. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Drucker, H.; Surges, C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process Syst. 1997, 1, 155–161. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.; Bell, M.; Bell, M. Plant population studies on peanut (Arachis hypogaea L.) in subtropical Australia. 3. Growth and water use during a terminal drought stress. Aust. J. Exp. Agric. 1992, 32, 197–203. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Eprashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemba, B.; Wuyep, S.; Adebayo, A.; Jahknwa, C. Growth and Yield Response of Irish Potato (Solanum tuberosum) to Climate in Jos-South, Plateau State, Nigeria Growth and Yield Response of Irish Potato Solanum Tuberosumto Climate in Jos-South, Plateau State, Nigeria Strictly as per the compliance a. Int. J. Plant Res. 2013, 2019, 1–7. [Google Scholar] [CrossRef]
- Ku, S.-B.; Edwards, G.E.; Tanner, C.B. Effects of Light, Carbon Dioxide, and Temperature on Photosynthesis, Oxygen Inhibition of Photosynthesis, and Transpiration in Solanum tuberosum. Plant Physiol. 1977, 59, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Charoen-Ung, P.; Mittrapiyanuruk, P. Sugarcane Yield Grade Prediction Using Random Forest with Forward Feature Selection and Hyper-Parameter Tuning BT—Recent Advances in Information and Communication Technology 2018; Unger, H., Sodsee, S., Meesad, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 33–42. [Google Scholar]
- Ranjan, A.K.; Parida, B.R. Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spat. Inf. Res. 2019, 27, 399–410. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K.; Gaitan, C.F.; Sugimoto, K.; Cannon, A.J.; Hsieh, W.W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 2015, 153, 399–410. [Google Scholar] [CrossRef]
- Gandhi, N.; Armstrong, L.J.; Petkar, O.; Tripathy, A.K. Rice crop yield prediction in India using support vector machines. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5. [Google Scholar]
- Ju, S.; Lim, H.; Heo, J. Machine learning approaches for crop yield prediction with MODIS and weather data. In Proceedings of the 40th Asian Conference on Remote Sensing: Progress of Remote Sensing Technology for Smart Future, ACRS 2019, Daejeon, Republic of Korea, 14–18 October 2019; pp. 1–4. [Google Scholar]
- Ahmad, I.; Saeed, U.; Fahad, M.; Ullah, A.; Rahman, M.H.U.; Judge, J. Yield Forecasting of Spring Maize Using Remote Sensing and Crop Modeling in Faisalabad-Punjab Pakistan. J. Indian Soc. Remote. Sens. 2018, 46, 1701–1711. [Google Scholar] [CrossRef]
- Buschjager, S.; Morik, K. Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data. IEEE Trans. Circuits Syst. I: Regul. Pap. 2018, 65, 209–222. [Google Scholar] [CrossRef]
- Prajwala, T.R.; Ramesh, D.; Venugopal, H. Modeling and Forecasting of Rainfall using IoT sensors and Adaptive Boost Classifier for a Region. SSRN Electron. J. 2021, 58–61. [Google Scholar] [CrossRef]
rain_1m | rain_2m | rain_3m | rain_4m | temp_1m | temp_2m | temp_3m | temp_4m | Product | |
---|---|---|---|---|---|---|---|---|---|
count | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 |
mean | 120.9 | 184.2 | 186.1 | 162.4 | 24.8 | 24.8 | 23.6 | 23.6 | 11,843.6 |
std | 47.1 | 61.8 | 51.6 | 62.4 | 1.3 | 0.9 | 1.5 | 0.9 | 1514.9 |
min | 24.5 | 53.2 | 50.1 | 15.5 | 22.2 | 22.3 | 20.3 | 21.3 | 7649 |
25% | 82.7 | 140 | 153.8 | 122.3 | 23.5 | 24.2 | 22.6 | 23 | 10,787.8 |
50% | 121.3 | 185.9 | 179.3 | 153.3 | 25.3 | 24.8 | 23.8 | 23.3 | 11,938.2 |
75% | 152 | 221 | 211.6 | 193.8 | 25.8 | 25.4 | 24.7 | 24.2 | 13,105.2 |
max | 243.9 | 447.7 | 394.1 | 395.7 | 27.4 | 26.4 | 26.6 | 26.1 | 14,679 |
rain_1m | rain_2m | rain_3m | rain_4m | rain_5m | temp_1m | temp_2m | temp_3m | temp_4m | temp_5m | Product | |
---|---|---|---|---|---|---|---|---|---|---|---|
count | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 | 1921 |
mean | 129.9 | 186.0 | 188.1 | 149.3 | 74.2 | 24.9 | 24.5 | 23.8 | 23.7 | 24.8 | 1548.1 |
std | 51.0 | 66.2 | 57.5 | 68.7 | 43.0 | 0.9 | 1.0 | 0.9 | 0.9 | 0.6 | 301.6 |
min | 28.2 | 32.7 | 51.4 | 6.2 | 1 | 22.6 | 22.7 | 22.1 | 21.8 | 23.4 | 749.2 |
25% | 90.4 | 140.3 | 150.3 | 105.1 | 40.5 | 24.4 | 23.6 | 23.1 | 23 | 24.5 | 1334.1 |
50% | 126.4 | 184.6 | 181.9 | 145.4 | 67.9 | 25.3 | 24.5 | 23.7 | 23.6 | 24.8 | 1564.4 |
75% | 159.6 | 226.4 | 220.3 | 185.8 | 104.5 | 25.5 | 25.2 | 24.4 | 24.4 | 25.1 | 1758.3 |
max | 315.2 | 449.9 | 398.6 | 400.8 | 213.4 | 26.1 | 26.4 | 25.9 | 26.1 | 26.2 | 2223.2 |
Fold | Random Forest Regressor | Polynomial Regressor | Support Vector Regressor |
---|---|---|---|
1 | 0.868 | 0.768 | 0.545 |
2 | 0.868 | 0.805 | 0.586 |
3 | 0.885 | 0.788 | 0.516 |
4 | 0.876 | 0.762 | 0.575 |
5 | 0.879 | 0.744 | 0.578 |
Average | 0.875 | 0.773 | 0.560 |
Standard deviation | 0.006 | 0.021 | 0.026 |
Fold | Random Forest Regressor | Polynomial Regressor | Support Vector Regressor |
---|---|---|---|
1 | 0.842 | 0.767 | 0.529 |
2 | 0.764 | 0.657 | 0.494 |
3 | 0.821 | 0.708 | 0.568 |
4 | 0.816 | 0.729 | 0.563 |
5 | 0.839 | 0.720 | 0.592 |
Average | 0.817 | 0.716 | 0.549 |
Standard deviation | 0.028 | 0.035 | 0.034 |
Model | MAE | RMSE |
---|---|---|
Random Forest Regressor | 418.699 | 510.817 |
Polynomial Regressor | 563.587 | 740.199 |
Support Vector Regressor | 722.779 | 971.633 |
Model | MAE | RMSE |
---|---|---|
Random Forest Regressor | 96.196 | 129.977 |
Polynomial Regressor | 116.418 | 152.759 |
Support Vector Regressor | 155.092 | 212.423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture 2023, 13, 225. https://doi.org/10.3390/agriculture13010225
Kuradusenge M, Hitimana E, Hanyurwimfura D, Rukundo P, Mtonga K, Mukasine A, Uwitonze C, Ngabonziza J, Uwamahoro A. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture. 2023; 13(1):225. https://doi.org/10.3390/agriculture13010225
Chicago/Turabian StyleKuradusenge, Martin, Eric Hitimana, Damien Hanyurwimfura, Placide Rukundo, Kambombo Mtonga, Angelique Mukasine, Claudette Uwitonze, Jackson Ngabonziza, and Angelique Uwamahoro. 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize" Agriculture 13, no. 1: 225. https://doi.org/10.3390/agriculture13010225
APA StyleKuradusenge, M., Hitimana, E., Hanyurwimfura, D., Rukundo, P., Mtonga, K., Mukasine, A., Uwitonze, C., Ngabonziza, J., & Uwamahoro, A. (2023). Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture, 13(1), 225. https://doi.org/10.3390/agriculture13010225