Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review
Abstract
:1. Introduction
2. Soil Improvement and Function Promotion Technology
3. Vegetation Restoration and Optimal Plant Configuration Pattern Technology
4. Soil Microbial Restoration Technology
5. Efficient Management and Monitoring Technology
6. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.X.; Huang, W.P.; Han, H.J.; Xu, C.Y. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renew. Sustain. Energy Rev. 2021, 143, 110883. [Google Scholar] [CrossRef]
- Wu, Z.H.; Lei, S.G.; Lu, Q.Q.; Zheng, F.B. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Q.; Ma, W.M.; Li, M.M.; He, H.H.; Zhang, X.C.; Wang, Y. Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China. Catena 2015, 133, 403–411. [Google Scholar] [CrossRef]
- Li, X.H.; Lei, S.G.; Liu, F.; Wang, W.Z. Analysis of Plant and Soil Restoration Process and Degree of Refuse Dumps in Open-Pit Coal Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Haydar, Y.; Armbrecht, I. Response of Ants and Their Seed Removal in Rehabilitation Areas and Forests at El Cerrejón Coal Mine in Colombia. Restor. Ecol. 2011, 19, 178–184. [Google Scholar] [CrossRef]
- Luo, Z.B.; Ma, J.; Chen, F.; Li, X.X.; Zhang, Q.; Yang, Y.J. Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Activities in the Loess Plateau, China. Microorganisms 2020, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.F.; Zhang, S.W.; Zhang, L.P.; Zhang, H.Y.; Li, Z. Research progress on conservation and restoration of biodiversity in land reclamation of opencast coal mine. J. Agric. Mach. 2015, 46, 72–82. [Google Scholar]
- Ao, M.; Qiu, G.L.; Zhang, C.; Xu, X.H.; Zhao, L.; Feng, X.B.; Qin, S.; Meng, B. Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China. Environ. Pollut. 2018, 245, 173–182. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Sun, S. Study on the Reclamation and Ecological Reconstruction of Abandoned Land in Mining Area. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 022073. [Google Scholar] [CrossRef]
- Lv, K.; Li, X.F.; Zhi, Y.B. Mechanism of Phytoremediation and Co-reconstruction for Waste Dump in Open-cast Collieries. J. Inn. Mong. Norm. Univ. 2019, 48, 458–464. [Google Scholar]
- Hou, X.Y.; Liu, S.L.; Zhao, S.; Dong, S.K.; Sun, Y.X.; Beazley, R. The alpine meadow around the mining areas on the Qinghai-Tibetan Plateau will degenerate as a result of the change of dominant species under the disturbance of open-pit mining. Environ. Pollut. 2019, 254, 113111. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.H.; Dong, S.G.; Chen, Y.; Liu, H. Study on evolution of groundwater-lake system in typical prairie open-pit coal mine area. Environ. Geochem. Health 2021, 43, 4075–4087. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.B.; Cao, Y.G.; Xu, H.X.; Yang, G.; Wang, S.F.; Haung, Y.H.; Bai, Z.K. Detection of soil physical properties of reclaimed land in open-pit mining area: Feasibility of application of ground penetrating radar. Environ. Monit. Assess. 2021, 193, 392. [Google Scholar] [CrossRef]
- Hindersmann, B.; Achten, C. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environ. Pollut. 2018, 242, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Sawut, R.; Tiyip, T.; Abliz, A.; Kasim, N.; Nurmemet, I.; Sawut, M.; Tashpolat, N.; Ablimit, A. Using regression model to identify and evaluate heavy metal pollution sources in an open pit coal mine area, Eastern Junggar, China. Environ. Earth Sci. 2017, 76, 822. [Google Scholar] [CrossRef]
- Rukeya, S.; Nijat, K.; Abdugheni, A.; Li, H.; Yalkun, A.; Maihemuti, B.; Shi, Q.D. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. Int. J. Appl. Earth Obs. Geoinform. 2018, 73, 14–15. [Google Scholar]
- Keller, D.H.; Zelanko, P.M.; Gagnon, J.E.; Horwitz, R.J.; Galbraith, H.S.; Velinsky, D.J. Linking otolith microchemistry and surface water contamination from natural gas mining. Environ. Pollut. 2018, 240, 457–465. [Google Scholar] [CrossRef]
- Li, L.C.; Zhao, B.B.; Wang, Y.P. Nestedness of waterbird assemblages in the subsidence wetlands recently created by underground coal mining. Curr. Zool. 2019, 65, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Anawar, H.M. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J. Environ. Manag. 2015, 158, 111–121. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, J. Optimal sampling design for reclaimed land management in mining area: An improved simulated annealing approach. J. Clean. Prod. 2019, 231, 1059–1069. [Google Scholar] [CrossRef]
- Islam, N.; Rabha, S.; Subramanyam, K.S.V.; Saikia, B.K. Geochemistry and mineralogy of coal mine overburden (waste): A study towards their environmental implications. Chemosphere 2021, 274, 129736. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [Google Scholar] [CrossRef]
- Xu, X.C.; Gu, X.W.; Wang, Q.; Gao, X.W.; Liu, J.P.; Wang, Z.K.; Wang, X.H. Production scheduling optimization considering ecological costs for open pit metal mines. J. Clean. Prod. 2018, 180, 210–221. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, P.; Hu, Y.G.; Zhao, Y. Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecol. Eng. 2016, 94, 638–646. [Google Scholar]
- Wang, S.Y.; Shi, Y.; Niu, J.J.; Fan, L.Y. Influence of vegetation restoration models on soil nutrient of coal gangue pile: A case study of No.1 Coal Gangue Pile in Hedong, Shanxi. Acta Geogr. Sin. 2013, 68, 372–379. [Google Scholar]
- Zhang, J.J.; Fu, M.C.; Hassani, F.P.; Zeng, H.; Geng, Y.H.; Bai, Z.K. Land Use-Based Landscape Planning and Restoration in Mine Closure Areas. Environ. Manag. 2011, 47, 739–750. [Google Scholar] [CrossRef]
- Han, C.W.; Gao, Z.W.; Wu, Z.H.; Huang, J.; Liu, Z.Y.; Zhang, L.; Zhang, G.G. Restoration of damaged ecosystems in desert steppe open-pit coal mines: Effects on soil nematode communities and functions. Land Degrad. Dev. 2021, 32, 4402–4416. [Google Scholar] [CrossRef]
- Chatterjee, S. Impact of open pit coal mining on the forest landscape ecology using spatial metrics: A study of Barabani CD block, West Bengal. Spat. Inf. Res. 2021, 29, 645–659. [Google Scholar] [CrossRef]
- Dong, X.; Ba, T.L. Rapid analysis of coal characteristics based on deep learning and visible-infrared spectroscopy. Microchem. J. 2020, 157, 104880. [Google Scholar]
- Jambhulkar, H.P.; Hemlata, P. Eco-restoration approach for mine spoil overburden dump through biotechnological route. Environ. Monit. Assess. 2019, 191, 772. [Google Scholar] [CrossRef]
- Down, C.G.; Stocks, J. Environmental Impacts of Mining; Applied Science Publications: London, UK, 1977. [Google Scholar]
- Lv, G.; Xiao, P.; Li, Y.X.; Dong, L.; Du, X.P. Stability of topsoil aggregates under different reclamation modes in the dump of Haizhou opencast coal mine. Sci. Soil Water Conserv. 2018, 16, 77–84. [Google Scholar]
- Sourkova, M.; Frouz, J.; Santruckova, H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 2005, 124, 203–214. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorearobusta) forest, India. Catena 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, P.P.; Hu, Y.G.; Zhao, Y. Soil water deficit and vegetation restoration in the refuse dumps of the Heidaigou open-pit coal mine, Inner Mongolia, China. Sci. Cold Arid. Reg. 2016, 8, 22–35. [Google Scholar]
- Feng, Y.; Wang, J.M.; Bai, Z.K.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Xu, Z.J.; Zhao, S.M.; Wang., P.Z.; Bi., R.T. Evaluation of the impacts of coal mining on farmland quality in mine-agriculture regions in China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 273–282. [Google Scholar]
- Wang, S.F.; Zhuang., Y.N.; Cao., Y.G.; Yang., K. Ecosystem Service Assessment and Sensitivity Analysis of a Typical Mine-Agriculture-Urban Compound Area in North Shanxi, China. Land 2022, 11, 1378. [Google Scholar] [CrossRef]
- Xu, X.L.; Zhao, Y.L.; Hu, Z.Q.; Yu, Y.; Shao, F. Boundary demarcation of the damaged cultivated land caused by coal mining subsidence. Bull. Eng. Geol. Environ. 2014, 73, 621–633. [Google Scholar] [CrossRef]
- Hou, J.; Yu, H.C.; Mou, S.G.; Bian, Z.F. Spatial-temporal characteristics of land degradation and its influencing factors in coal mine areas in Western China. Coal Sci. Technol. 2020, 48, 206–216. [Google Scholar]
- Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar]
- Babau, A.M.; Micle, V.; Damian, G.E.; Sur, I.M. Preliminary Investigations Regarding the Potential of Robinia pseudoacacia L. (Leguminosae) in the Phytoremediation of Sterile Dumps. J. Environ. Prot. Ecol. 2020, 21, 46–55. [Google Scholar]
- Chen, F.; Yao, Q.; Tian, J.Y. Review of ecological restoration technology for mine tailings in China. Eng. Rev. 2016, 36, 115–121. [Google Scholar]
- Chen, M.M.; Zhang, S.R.; Liu, L.; Wu, L.P.; Ding, X.D. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, Pavailability and root growth in saline-alkaline soil-ScienceDirect. Soil Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.G.; Chen, X.Y.; Long, L.L. Study of plant configuration pattern in guided vegetation restoration: A case study of semiarid underground mining areas in Western China. Ecol. Eng. 2021, 170, 106334. [Google Scholar] [CrossRef]
- Neuenkamp, L.; Prober, S.M.; Price, J.N.; Zobel, M.; Standish, R.J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 2019, 40, 140–149. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Wang, Y.X. Land Destruction by Coal Mining in Shanxi and Its Prevention and Control Measure. Res. Soil Water Conserv. 2007, 5, 408–411. [Google Scholar]
- Zhang, L.; Wang, J.M.; Bai, Z.K.; Lv, C.J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–50. [Google Scholar] [CrossRef]
- Zhu, S.C.; Zheng, H.X.; Liu, W.S.; Liu, C.; Guo, M.N. Plant-Soil Feedbacks for the Restoration of Degraded Mine Lands: A Review. Front. Microbiol. 2022, 12, 4238. [Google Scholar] [CrossRef]
- Nadalia, D.; Pulunggono, H.B. Soil characteristics of post-mining reclamation land and natural soil without top soil. J. Degrad. Min. Lands Manag. 2020, 7, 2011–2016. [Google Scholar] [CrossRef]
- Wilson-Kokes, L.; Emerson, P.; DeLong, C.; Thomas, C.; Skousen, J. Hardwood tree growth after eight years on brown and gray mine soils in West Virginia. J. Environ. Qual. 2013, 42, 1353–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, K.S.; Hasan, M. Role of Indian Bureau of Mines in protection of environment in the minerals sector. J. Mines Met. Fuels 2003, 51, 196–200. [Google Scholar]
- Li, Q.S.; Han, X.; Zhao, Y.; Lin, H.; Wang, X. Research on integration and application of key technologies of vegetation restoration in open-pit coal mine—A case study of external dump of Sheng li opencast coal mine. Environ. Ecol. 2021, 6, 47–53. [Google Scholar]
- Nicolini, F.; Topp, W. Soil properties in plantations of sessile oak (Quercus petraea) and red oak (Quercus rubra) in reclaimed lignite open-cast mines of the Rhineland. Geoderma 2005, 129, 65–72. [Google Scholar] [CrossRef]
- Sena, K.; Barton, C.; Hall, S.; Angel, P.; Agouridis, C.; Warner, R. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Restor. Ecol. 2015, 23, 131–138. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhu, Q.; Liu, X.Y.; Li, Y. Preparation of topsoil alternatives for open-pit coal mines in the Hulunbuir grassland area, China. Appl. Soil Ecol. 2020, 147, 103431. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, W.; Qi, C.; Yang, M. Enhanced Plant Restoration in Open-Pit Mines Using Maize Straw and Ultrasonically Pre-Treated Coal Fly Ash. Sustainability 2020, 12, 9307. [Google Scholar] [CrossRef]
- Qian, T.N.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-temporal analyses of surface coal mining dominated land degradation in Holingol. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Feng, H.B.; Zhou, J.W.; Zhou, A.G.; Bai, G.Y.; Li, Z.X.; Chen, H.N.; Su, D.H.; Han, X. Grassland Ecological Restoration Based on the Relationship between Vegetation and Its Below-ground Habitat Analysis in Steppe Coal Mine Area. Sci. Total Environ. 2021, 78, 146221. [Google Scholar] [CrossRef]
- Zhang, S.L.; Mi, J.X.; Hou, H.P.; Yang, Y.J. Research progress of mine ecological restoration—Based on the report of three consecutive world ecological restoration conferences. Acta Ecol. Sin. 2018, 38, 5611–5619. [Google Scholar]
- Winkler, N.; Weymann, W.; Auge, H.; Klotz, S.; Finkenbein, P.; Heilmeier, H. Drought resistance of native pioneer species indicates potential suitability for restoration of post-mining areas. Web Ecol. 2015, 14, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Hau, B.C.H.; Corlett, R.T. Factors affecting the early survival and growth of native tree seedlings planted on a degraded hillside grassland in Hong Kong, China. Restor. Ecol. 2003, 11, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Hu, Y.G.; Huang, L.; Zhao, Y.; Hu, R.; Liu, M.L. Effect of vegetation reconstruction on soil respiration of Liu dumping site in an open pit coal mine. Ecol. Sci. 2016, 4, 91–96. [Google Scholar]
- Zhang, L.; Lu, Z.H.; Tang, S.Y.; Zhang, M.; Zhang, R.T.; Huang, Y.K.; Shang, Z. Slope vegetation characteristics and community stability at different restoration years of open-pit coal mine waste dump. Acta Ecol. Sin. 2021, 41, 5764–5774. [Google Scholar]
- Wang, J.M.; Wang, H.D.; Cao, Y.G.; Bai, Z.K.; Qin, Q. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Sci. Rep. 2016, 6, 22058. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.F.; Cao, Y.G.; Pietrzykowski, M.; Zhou, W.; Zhao, Z.Q.; Bai, Z.K. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area. Environ. Monit. Assess. 2020, 192, 740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chai, L.J.; Chen, J.; Wang, X.M. Technology and appli-cation for ecological rehabilitation on self-maintaining veg-etation restoratio. Land Reclam. Ecol. Fragile Areas 2017, 10, 255–257. [Google Scholar]
- Li, Q.S.; Han, X.; Zhao, Y.; Lin, H.J.; Wang, X.M. Research on integration and application of key technologies of Ecological restoration and Management of vegetation restoration in open-pit coal mine—A case study of the outfall of Shengli open-pit Mine. Environ. Ecol. 2021, 3, 7. [Google Scholar]
- Dong, Q.; Li, S.Q. Different vegetation under grass on the reclaimed land in An Tai Bao open-pit coal mine area Study on the ecological relationship of this plant community. Chin. Agric. Sci. Bull. 2018, 34, 95–100. [Google Scholar]
- Hong, Z.A.; Cheng, Y.S.; Wang, B.C.; Sun, X.Y.; Wang, Y.J. Study on the integration of remote sensing monitoring and remediation mode for mine geological environment restoration and treatment in Liaoyuan City. Chin. J. Geomech. 2017, 23, 631–637. [Google Scholar]
- Bi, Y.L.; Xiao, L.; Guo, C.; Christie, P. Revegetation type drives rhizosphere arbuscular mycorrhizal fungi and soil organic carbon fractions in the mining subsidence area of northwest China. Catena 2020, 195, 104791. [Google Scholar] [CrossRef]
- Chen, J.; Nan, J.; Xu, D.L.; Mo, L.; Zheng, Y.X.; Chao, L.M.; Qu, H.T.; Guo, Y.Q.; Li, F.S.; Bao, Y.Y. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. Catena 2020, 194, 104779. [Google Scholar] [CrossRef]
- Mitra, D.; Djebaili, R.; Pellegrini, M.; Mahakur, B.; Sarker, A.; Chaudhary, P.; Khoshru, B.; Del Gallo, M.; Kitouni, M.; Barik, D.P.; et al. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J. Plant Nutr. 2021, 44, 1993–2029. [Google Scholar] [CrossRef]
- Stoma, G.V.; Manucharova, N.A.; Belokopytova, N.A. Biological Activity of Microbial Communities in Soils of Some Russian Cities. Eurasian Soil Sci. 2020, 53, 760–771. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Rady, M.M.; Taha, R.S.; Abd El Azeam, S.; Simpson, C.R.; Semida, W.M. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Turley, N.E.; Bell-Dereske, L.; Evans, S.E.; Brudvig, L.A. Agricultural land-use history and restoration impact soil microbial biodiversity. J. Appl. Ecol. 2020, 57, 852–863. [Google Scholar] [CrossRef]
- Sur, I.M.; Micle, V.; Hegyi, A.; Lazarescu, A.V. Extraction of Metals from Polluted Soils by Bioleaching in Relation to Environmental Risk Assessment. Materials 2022, 15, 393. [Google Scholar] [CrossRef]
- Ben-Laouane, R.; Baslam, M.; Ait-El-Mokhtar, M.; Anli, M.; Boutasknit, A.; Ait-Rahou, Y.; Toubali, S.; Mitsui, T.; Oufdou, K.; Eahbi, S.; et al. Potential of Native Arbuscular Mycorrhizal Fungi, Rhizobia, and/or Green Compost as Alfalfa (Medicago sativa) Enhancers under Salinity. Microorganisms 2020, 8, 1695. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Bi, Y.L.; Shen, H.H.; Zhang, L.J. Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China. J. Microbiol. Biotechnol. 2020, 30, 848–855. [Google Scholar] [CrossRef]
- Bhalla, S.; Garg, N. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. Mycorrhizal 2021, 31, 735–754. [Google Scholar] [CrossRef]
- Dumbrell, A.J.; Nelson, M.; Helgason, T.; Dytham, C.; Fitter, A.H. Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: Is there a role for stochastic processes? J. Ecol. 2010, 98, 419–428. [Google Scholar] [CrossRef]
- Estrada, B.; Barea, J.M.; Aroca, R.; Ruiz-Lozano, J.M. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 2013, 366, 333–349. [Google Scholar] [CrossRef]
- Fard, S.E.; Yarnia, M.; Farahvash, F.; Behrouzyar, E.K.; Rashidi, V. Arbuscular Mycorrhizas and Phosphorus Fertilizer Affect Photosynthetic Capacity and Antioxidant Enzyme Activity in Peppermint Under Different Water Conditions. Acta Agrobot. 2021, 73, 7345. [Google Scholar]
- Zhao, R.X.; Guo, W.; Bi, N.; Guo, J.Y.; Wang, L.X.; Zhao, J.; Zhang, J. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays, L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 2015, 88, 41–49. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, R.X.; Fu, R.Y.; Bi, N.; Wang, L.X.; Zhao, W.J.; Guo, J.Y.; Zhang, J. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils. Environ. Sci. Pollut. Res. 2014, 21, 3592–3603. [Google Scholar] [CrossRef]
- Bi, Y.L.; Qiu, L.; Zhakypbek, Y.; Jiang, B.; Cai, Y.; Sun, H. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China. Agric. Water Manag. 2018, 201, 278–286. [Google Scholar] [CrossRef]
- Caser, M.; Victorino, I.M.M.; Demasi, S.; Berruti, A.; Donno, D.; Lumini, E.; Bianciotto, V.; Scariot, V. Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Sheng, M.; Tang, M.; Chen, H.; Tang, M. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 2008, 18, 287–296. [Google Scholar] [CrossRef]
- Li, T.; Lin, G.; Zhang, X.; Chen, Y.L.; Zhang, S.B.; Chen, B.D. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza 2014, 24, 595–602. [Google Scholar] [CrossRef]
- Song, Z.H.; Bi, Y.L.; Zhang, J.; Gong, Y.L.; Yang, H.H. Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Sci. Rep. 2020, 10, 18373. [Google Scholar] [CrossRef]
- Janouskova, M.; Rydlova, J.; Puschel, D.; Szakova, J.; Vosatka, M. Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 2011, 21, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Caravaca, F.; Alguacil, M.M.; Azcon, R.; Roldan, A. Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: Effect of AM fungi and organic amendments. Appl. Soil Ecol. 2006, 33, 30–38. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Jambhulkar, H.P. Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour. Technol. 2008, 99, 4732–4741. [Google Scholar] [CrossRef] [PubMed]
- Kneller, T.; Harris, R.J.; Bateman, A.; Muñoz-Rojas, M. Science of the Total Environment Native-plant amendments and topsoil addition enhance soil function in postmining arid grasslands. Sci. Total Environ. 2018, 621, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Ohsowski, B.M.; Dunfield, K.; Klironomos, J.N.; Hart, M.M. Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits. Restor. Ecol. 2018, 26, 63–72. [Google Scholar] [CrossRef]
- Vahter, T.; Bueno, C.G.; Davison, J.; Herodes, K.; Hiiesalu, I.; Kasari-Toussaint, L.; Oja, J.; Olsson, P.A.; Sepp, S.K.; Zobel, M.; et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 2020, 57, 1741–1751. [Google Scholar] [CrossRef]
- Kong, J.; He, Z.; Chen, L.; Yang, R.; Du, J. Efficiency of biochar, nitrogen addition and microbial agent amendments in remediation of soil properties and microbial community in mine soils. Ecol. Evol. 2021, 11, 9318–9331. [Google Scholar] [CrossRef]
- Meier, S.; Moore, F.; Khan, N.; Gonzalez, M.E.; Medina, J.; Cumming, J.; Morales, A.; Duran, P.; Seguel, A.; Aponte, H.; et al. Effect of Poultry Manure Compost and Arbuscular Mycorrhizal Fungi on Cu Immobilization and Soil Microbial Communities in a Cu-Contaminated Soil Using the Metallophyte Oenothera Picensis. J. Soil Sci. Plant Nutr. 2021, 21, 1957–1967. [Google Scholar] [CrossRef]
- Jin, L.Q.; Li, X.L.; Song, Z.H.; Sun, H.F.; Yang, X.G. Effects of different recovery years on the vegetation and soil characteristics of piling mining residuals mountain in alpine and coal mining region. Chin. J. Ecol. 2019, 38, 121–128. [Google Scholar]
- Wang, W.; Liu, R.Y.; Gan, F.P.; Zhou, P.; Zhang, X.W.; Ding, L. Monitoring and Evaluating Restoration Vegetation Status in Mine Region Using Remote Sensing Data: Case Study in Inner Mongolia, China. Remote Sens. 2021, 13, 1350. [Google Scholar] [CrossRef]
- Shuai, S.; Zhang, Z.; Lyu, X.; Chen, S.I.; Ma, Z.C.; Xie, C.R. Remote sensing monitoring of vegetation phenological characteristics and vegetation health status in mine restoration areas. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2021, 37, 224–234. [Google Scholar]
- Qi, Y.N.; Liao, S.B.; Wang, Q.L. Research on evaluation of mining area ecological security based on GF-1 satellite imagery-taking Fushun West open-pit mine for example. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012128. [Google Scholar] [CrossRef]
- Rasmussen, J.; Azim, S.; Boldsen, S.K.; Nitschke, T.; Jensen, S.M.; Nielsen, J.; Christensen, S. The challenge of reproducing remote sensing data from satellites and unmanned aerial vehicles (UAVs) in the context of management zones and precision agriculture. Precis. Agric. 2021, 22, 834–851. [Google Scholar] [CrossRef]
- Liao, X.H.; Yue, H.Y.; Liu, R.G.; Luo, X.Y.; Luo, B.; Lu, M.; Ryan, B.; Ye, H.P. Launching an unmanned aerial vehicle remote sensing data carrier:concept, key components and prospects. Int. J. Digit. Earth 2020, 13, 1172–1185. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Han, Z.Y.; Han, L. Research progress in the application of Unmanned Aerial Vehicles technology in mine restoration projects. Henan Sci. Technol. 2021, 40, 62–65. [Google Scholar]
- Fleisher, K.R.; Hufford, K.M. Monitoring Geomorphic and Traditional Post-Mine Reclamation using Digital Imagery: Vegetative Heterogeneity and Sampling Efficiency. Rangel. Ecol. Manag. 2020, 73, 584–593. [Google Scholar] [CrossRef]
Site Conditions | Abundance Value | Allocation Ratio | |
---|---|---|---|
Herb | Shrub | Herbs:Shrub | |
High elevation of sunny-steep slope | 0.1000 | 0.1960 | 1.4:2.8 |
High elevation of sunny-gentle slope | 0.1188 | 0.2205 | 1.3:2.4 |
High elevation of sunny-flat slope | 0.1091 | 0.2684 | 1.5:3.6 |
Low elevation of sunny-steep slope | 0.0949 | 0.2043 | 1.2:2.7 |
Low elevation of sunny-gentle slope | 0.0921 | 0.2244 | 1.1:2.7 |
Low elevation of sunny-flat slope | 0.0993 | 0.2320 | 1.4:3.3 |
High elevation of shady-steep slope | 0.0883 | 0.2417 | 1.9:5.1 |
High elevation of shady-gentle slope | 0.0829 | 0.2694 | 1.5:4.8 |
High elevation of shady-flat slope | 0.0900 | 0.2635 | 1.4:4.2 |
Low elevation of shady-steep slope | 0.0609 | 0.2806 | 1.4:6.4 |
Low elevation of shady-gentle slope | 0.0719 | 0.2904 | 1.2:5.0 |
Low elevation of shady-flat slope | 0.0850 | 0.2709 | 1.4:4.5 |
Item | Mycorrhizal Infection Rate % | Mycelium Density m g−1 | Aboveground Biomass g plant−1 | Underground Biomass g plant−1 | Mycorrhizal Responsiveness % |
---|---|---|---|---|---|
Top soil | 0 | 0 | 11.07 ± 1.1 b | 1.58 ± 0.04 b | 29.45 |
Top soil + M | 83 ± 3 a | 3.61 ± 0.11 a | 83 ± 3 a | 2.17 ± 0.13 a | |
Sandy soil | 0 | 0 | 8.17 ± 0.27 cd | 0.94 ± 0.13 cd | 25.48 |
Sandy soil + M | 83 ± 3 a | 3.88 ± 0.09 a | 10.16 ± 0.84 bc | 1.27 ± 0.07 c | |
Clay soil | 0 | 0 | 7.08 ± 0.59 d | 0.7 ± 0.06 d | 11.85 |
Clay soil + M | 80 ± 2 a | 1.54 ± 0.21 b | 7.86 ± 0.34 bcd | 0.82 ± 0.05 c | |
S_C soil | 0 | 0 | 10.57 ± 0.45 b | 1.61 ± 0.07 b | 34.83 |
S_C soil + M | 83 ± 3 a | 3.79 ± 0.13 a | 14.25 ± 0.8 a | 2.17 ± 0.14 a |
Evaluation Indicators | Field Investigation | Satellite Remote Sensing | Unmanned Aerial Vehicles Remote Sensing |
---|---|---|---|
Cost budget | High, surveying and mapping costs account for 15% of the total cost | Moderate, requires a higher cost to complete | Low operating cost and can be used multiple times |
Work efficiency | Inefficient and time-consuming | General efficiency, has a time lag in regional monitoring. | Relatively high efficiency simple and fast operation |
Accuracy | Lower, there will be human error | Generally Influenced by many external factors | Higher, collect information efficiently |
Data aging | Low, long periodic table | Generally, longer cycle | High, timely and accurate data |
Convenient and practical | Inconvenient, the terrain is complex and it is difficult to collect information | Better, convenient and practical | Better, convenient and practical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Li, X.; Chen, J.; Li, J. Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review. Agriculture 2023, 13, 226. https://doi.org/10.3390/agriculture13020226
Xu D, Li X, Chen J, Li J. Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review. Agriculture. 2023; 13(2):226. https://doi.org/10.3390/agriculture13020226
Chicago/Turabian StyleXu, Daolong, Xiufen Li, Jian Chen, and Jianghua Li. 2023. "Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review" Agriculture 13, no. 2: 226. https://doi.org/10.3390/agriculture13020226
APA StyleXu, D., Li, X., Chen, J., & Li, J. (2023). Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review. Agriculture, 13(2), 226. https://doi.org/10.3390/agriculture13020226