Linking Natural Resource Dependence to Sustainable Household Wellbeing: A Case Study in Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Indicator Construction
2.3.1. Sustainable Household Wellbeing (SHWB)
2.3.2. Households’ Natural Resource Dependence
2.4. Econometric Model
2.4.1. Wellbeing Evaluation Model
2.4.2. Regression Analysis Model
3. Results and Analysis
3.1. Comparing the Natural Resource Dependence of Different Types of Households
3.2. Comparing the SHWB of Different Types of Households
3.3. Analysis of Natural Resource Dependence and SHWB
3.4. The Influence of Natural Resource Dependence on SHWB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Federation of Red Cross and Red Crescent Societies (IFRCRCS), “World Disasters Report 2014—Focus on Culture and Risk”. 2014. Available online: https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/13896 (accessed on 1 August 2023.).
- Barnett, J.; Webber, M. Accommodating Migration to Promote Adaptation to Climate Change; Policy Research Working Paper 5270; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Barua, P.; Rahman, S.H.; Molla, M.H. Sustainable adaptation for resolving climate displacement issues of southeastern islands in Bangladesh. Int. J. Clim. Chang. Str. 2017, 9, 790–810. [Google Scholar] [CrossRef]
- Manatunge, J.M.A.; Abeysinghe, U. Factors affecting the satisfaction of post-disaster resettlers in the long term: A case study on the resettlement sites of tsunami-affected communities in Sri Lanka. J. Asian Dev. 2017, 3, 94–124. [Google Scholar] [CrossRef]
- Vanclay, F. Project-induced displacement and resettlement: From impoverishment risks to an opportunity for development? Impact Assess. Proj. Apprais. 2017, 35, 3–21. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, Y.; Luo, Y. Post-disaster resettlement and livelihood vulnerability in rural China. Disaster Prev. Manag. 2017, 26, 65–78. [Google Scholar] [CrossRef]
- Xu, J.; Liu, W.; Li, J.; Li, C.; Feldman, M. Disaster Resettlement and Adaptive Capacity among Rural Households in China. Soc. Natur. Resour. 2022, 35, 245–259. [Google Scholar] [CrossRef]
- Lo, K.; Wang, M. How voluntary is poverty alleviation resettlement in China. Habitat Int. 2018, 73, 34–42. [Google Scholar] [CrossRef]
- Li, C.; Li, S.Z.; Feldman, M.W.; Li, J.; Zheng, H.; Daily, G.C. The Impact on Rural Livelihoods and Ecosystem Services of a Major Relocation and Settlement Program: A Case in Shaanxi, China. Ambio 2018, 47, 245–259. [Google Scholar] [CrossRef]
- Li, C.; Gao, M.; Li, S.Z.; Lei, H.B. The impact of farmers’ livelihood resilience on multi-dimensional poverty: Evidence from rural resettlement areas in Shaanxi Province. Chin. Popul. Resour. Environ. 2021, 31, 150–160. (In Chinese) [Google Scholar]
- Liu, W.; Li, J.; Ren, L.J.; Xu, J.; Li, C.; Li, S.Z. Exploring livelihood resilience and its impact on livelihood strategy in rural China. Soc. Indic. Res. 2020, 150, 977–998. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Xu, J. Effects of Disaster-Related Resettlement on the Livelihood Resilience of Rural Households in China. Int. J. Disaster Risk Reduct. 2020, 49, 101649. [Google Scholar] [CrossRef]
- Guo, X.S.; Kapucu, N. Examining the Impacts of Disaster Resettlement from a Livelihood Perspective: A Case Study of Qinling Mountains, China. Disasters 2017, 42, 251–274. [Google Scholar] [CrossRef]
- Sina, D.; Chang-Richards, A.Y.; Wilkinson, S.; Potangaroa, R. A conceptual framework for measuring livelihood resilience: Relocation experience from Aceh, Indonesia. World Dev. 2019, 117, 253–265. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystem; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- WWF. Sacred Himalayan Landscape in Nepal: Understanding the Changes in Livelihoods Assets with Locals: A Case Study from Kanchenjunga Conservation Area Project, Nepal; World Wildlife Fund: Kathmandu, Nepal, 2007. [Google Scholar]
- Sun, H.P.; Sun, W.F.; Geng, Y.; Kong, Y.S. Natural resource dependence, public education investment, and human capital accumulation. Pet. Sci. 2018, 15, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.D.; Oluoch-Kosura, W. Linking future ecosystem services and future human well-being. Ecol. Soc. 2006, 11, 11. [Google Scholar] [CrossRef]
- Li, C.; Kang, B.W.; Wang, L.; Li, S.Z.; Feldman, M.; Li, J. Does China’s Anti-Poverty Relocation and Settlement Program Benefit Ecosystem Services: Evidence from a Household Perspective. Sustainability 2019, 11, 1–16. [Google Scholar] [CrossRef]
- Quang, D.V.; Anh, T.N. Commercial collection of NTFPs and households living in or near the forests: Case study in Que, Con Cuong and Ma, Tuong Duong, Nghe An, Vietnam. Ecol.Econ. 2006, 60, 65–74. [Google Scholar] [CrossRef]
- Qin, Q.; Zhao, Z.; Liu, M.J.; Feng, J.; Wen, Y.L. Analysis of natural resources dependence and its impact factors of surrounding communities: Taking giant panda habitat in Sichuan Province as an example. Resour. Dev. Mark. 2017, 33, 301–306. (In Chinese) [Google Scholar]
- Maskey, V.; Gebremedhin, T.G.; Dalton, T.J. Social and cultural determinants of collective management of community forest in Nepal. J. Forest Econ. 2005, 11, 261–274. [Google Scholar] [CrossRef]
- Vedeld, P.; Angelsen, A.; Bojö, J.; Sjaastad, E.; Gertrude, K.B. Forest environmental incomes and the rural poor. For. Policy Econ. 2006, 9, 869–879. [Google Scholar] [CrossRef]
- Balbi, S.; Selomane, O.; Sitas, N.; Blanchard, R.; Kotzee, L.; Farrell, P.O.; Villa, F. Human dependence on natural resources in rapidly urbanising South African regions. Environ. Res. Lett. 2019, 14, 044008. [Google Scholar] [CrossRef]
- Liu, W.; Wu, X.Y. Poverty Alleviation Resettlement and Household Natural Resources Dependence: A Case Study from Ankang Prefecture, China. Agriculture 2023, 13, 1034. [Google Scholar] [CrossRef]
- Lashite, A.A.; Werker, E. Do natural resources help or hinder development? Resource abundance, dependence, and the role of institutions. Resour. Energy Econ. 2020, 61, 101183. [Google Scholar] [CrossRef]
- Mukul, S.A.; Rashid, A.Z.M.; Uddin, M.B.; Khan, N.A. Role of non-timber forest products in sustaining forest-based livelihoods and rural households’ resilience capacity in and around the protected area: A Bangladesh study. J. Environ. Plan Manag. 2016, 59, 628–642. [Google Scholar] [CrossRef]
- Baral, N.; Heinen, J.T. Decentralization and people’s participation in conservation: A comparative study from the Western Terai of Nepal. Int. J. Sustain. Dev. World Ecol. 2007, 14, 520–531. [Google Scholar] [CrossRef]
- Che, S.; Wang, J. Can environmental regulation solve the carbon curse of natural resource dependence: Evidence from China. Resour. Policy 2022, 79, 103100. [Google Scholar] [CrossRef]
- Li, J.M.; Dong, K.Y.; Wang, K.; Dong, X.C. How does natural resource dependence influence carbon emissions? The role of environmental regulation. Resour. Policy 2023, 80, 103268. [Google Scholar] [CrossRef]
- Ding, Y.H.; Yao, S.B. Comparative analysis of the impact of farmland conversion project on farmers’ well-being: Based on a survey of 951 rural households in 6 provinces. J. Arid Land Resour. Environ. 2017, 5, 1003–7578. [Google Scholar]
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Publ. Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef]
- Wang, B.J.; Tang, H.P. Human Well-Being and Its Applications and Prospects in Ecology. J. Ecol. Rural. Environ. 2016, 32, 697–702. [Google Scholar]
- King, M.F.; Ren’o, V.F.; Novo, E.M.L.M. The concept, dimensions and methods of assessment of human well-being within a socioecological context: A literature review. Soc. Indicat. Res. 2014, 116, 681–698. [Google Scholar] [CrossRef]
- Cummins, R.A.; Eckersley, R.; Lo, S.K. The Australian Unity Well-being Index: An Overview. Soc. Indic. Res. 2003, 76, 1–4. [Google Scholar]
- Summers, J.K.; Smith, L.M.; Case, J.L.; Linthurst, R.A. A review of the elements of human well-being with an emphasis on the contribution of ecosystem services. Ambio 2012, 41, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Yacouba, K.; Halil, A. Human well-being versus ecological footprint in MENA countries: A trade-off? J. Environ. Manag. 2020, 263, 1047223. [Google Scholar]
- Fulford, R.S.; Smith, L.M.; Harwell, M.; Dantin, D.; Russell, M.; Harvey, J. Human well-being differs by community type: Toward reference points in a human well-being indicator useful for decision support. Ecol. Indic. 2015, 56, 194–204. [Google Scholar] [CrossRef]
- Qiu, J.J.; Liu, Y.H.; Yuan, L.; Chen, C.J.; Huang, Q.Y. Research progress and prospect of the interrelationship between ecosystem services and human well-being in the context of coupled human and natural system. Prog. Geogr. 2021, 40, 1060–1072. [Google Scholar] [CrossRef]
- Li, C.; Guo, M.; Li, S.; Feldman, M. The Impact of the Anti-Poverty Relocation and Settlement Program on Rural Households’ Well-Being and Ecosystem Dependence: Evidence from Western China. Soc. Nat. Resour. 2021, 34, 40–59. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Peng, W.J.; Robinson, B.E.; Zheng, H.; Li, C.; Wang, F.C.; Li, R.N. The limits of livelihood diversification and sustainable household well-being, evidence from China. Environ. Dev. 2022, 43, 100736. [Google Scholar] [CrossRef]
- Sarah, K.J.; Mansour, B.; Fabrice, A.D.; Natalia, E.C.; Naho, M.; Mark, M. Insights into the importance of ecosystem services to human well-being in reservoir landscapes. Ecosyst. Serv. 2019, 39, 100987. [Google Scholar]
- Guo, M.M.; Li, C.; Wang, G.Y.; John, L.I. Examining the links between livelihood sustainability and environmental protection in the anti-poverty relocation and settlement program areas: An empirical analysis of Shaanxi, China. Front. Environ. Sci. 2022, 10, 1047223. [Google Scholar] [CrossRef]
- Luers, A.L. The surface of vulnerability: An analytical framework for examining environmental change. Glob. Environ. Chang. 2005, 15, 214–223. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Li, J.; Li, S.Z. Rural Households’ Poverty and Relocation and Settlement: Evidence from Western China. Int. J. Environ. Res. Public Health 2019, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Zhao, H.L.; Lu, J.; Lu, C.Y.; Xue, B. The influence of farmers’ livelihood strategies on household energy consumption in the Eastern Qinghai-Tibet Plateau, China. Sustainability 2018, 10, 1780. [Google Scholar] [CrossRef]
- Huang, Z.G.; Li, J. The Effect of rural tourism land expropriation on the well-being of landless farmers: An empirical study based on PSM Model. Resour. Sci. 2021, 43, 171–184. (In Chinese) [Google Scholar]
- Liu, W.; Cheng, Y.; Li, J.; Feldman, M. Livelihood adaptive capacities and adaptation strategies of relocated households in rural China. Front. Sustain. Food Syst. 2022, 6, 1067649. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, B.; Zheng, Q.R.; He, X.Q.; Zhang, T.F.; Jia, Y.Q.; Luo, Z.M. Study on the effect of returning farmland to Forest on farmers’ welfare in the Loess Plateau: A case study of Ningwu County. Resour. Sci. 2014, 36, 397–405. (In Chinese) [Google Scholar]
- Rafael, A.; Brayan, T.; Michelle, L.S.; Pablo, P.; Cem, I. Heterogeneous impact of natural resources on income inequality: The role of the shadow economy and human capital index. Econ. Anal. Policy 2021, 69, 690–701. [Google Scholar]
- Jean-Marie, B.; Pranab, B.; Sanghamitra, D.; Dilip, M.; Rinki, S. The Environmental Impact of Poverty: Evidence from Firewood Collection in Rural Nepal. Econ. Dev. Cult. Chang. 2010, 59, 23–61. [Google Scholar]
- Zhou, W.F.; Ma, Z.X.; Guo, S.L.; Deng, X.; Xu, D.D. Livelihood capital, evacuation and relocation willingness of residents in earthquake-stricken areas of rural China. Saf. Sci. 2021, 141, 105350. [Google Scholar] [CrossRef]
- Quandt, A. Measuring livelihood resilience: The household livelihood resilience approach (HLRA). World Dev. 2018, 107, 253–263. [Google Scholar] [CrossRef]
- Nadeem, A.M.; Rafique, M.Z.; Bakhsh, K.; Makhdum, M.S.A.; Huang, S. Impact of socio-economic and water access conditions on life satisfaction of rural farmers in Faisalabad district of Pakistan. Water Policy 2020, 22, 686–701. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Anwar, S.; Sarkodie, S.A.; Yaseen, M.R.; Nadeem, A.M.; Ali, Q. Comprehensive disaster resilience index: Pathway towards risk-informed sustainable development. J. Clean. Prod. 2022, 366, 132937. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Zhang, X.; Shi, Q.Q.; Geng, T.W. The impact of ecosystem services on human welfare in loess hilly and gully region and its population differences. Geogr. Res. 2022, 41, 1298–1310. [Google Scholar]
- Wang, X.C.; Dong, X.B.; Liu, H.M.; Wei, H.J.; Fan, W.G.; Lu, N.C.; Xu, Z.H.; Ren, J.H.; Xing, K.X. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Ciftcioglu, C.G. Assessment of the relationship between ecosystem services and human wellbeing in the social-ecological landscapes of Lefke Region in North Cyprus. Landscape Ecol. 2017, 32, 897–913. [Google Scholar] [CrossRef]
- Galarza-Villamar, J.A.; Leeuwis, C.; Pila-Quinga, G.M.; Cecchi, F.; Parraga-Lema, C.M. Local understanding of disaster risk and livelihood resilience: The case of rice smallholders and floods in Ecuador. Int. J. Disaster Risk Reduct. 2018, 31, 1107–1120. [Google Scholar] [CrossRef]
- Rogers, S.; Xue, T. Resettlement and climate change vulnerability: Evidence from rural China. Glob. Environ. Chang. 2015, 35, 62–69. [Google Scholar] [CrossRef]
- Lo, K.; Xue, L.Y.; Wang, W. Spatial restructuring through poverty alleviation resettlement in rural China. J. Rural Stud. 2016, 47, 496–505. [Google Scholar] [CrossRef]
- Rogers, S.; Li, J.; Lo, K.; Guo, H.; Li, C. Moving millions to eliminate poverty: China’s rapidly evolving practice of poverty resettlement. Dev. Policy Rev. 2020, 38, 541–554. [Google Scholar] [CrossRef]
- Thulstrup, A.W. Livelihood resilience and adaptive capacity: Tracing changes in household access to capital in central Vietnam. World Dev. 2015, 74, 352–362. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.F. Social integration of new-generation migrants in Shanghai China. Habitat Int. 2015, 49, 419–425. [Google Scholar] [CrossRef]
- Tang, J.J.; Xu, Y.; Ma, W.L.; Gao, S. Does participation in poverty alleviation programmers increase subjective well-being? Results from a survey of rural residents in Shanxi, China. Habitat Int. 2021, 118, 102455. [Google Scholar] [CrossRef]
- Li, M.P.; Huo, X.X.; Peng, C.H.; Qiu, H.G.; Shangguan, Z.P.; Chang, C.; Huai, J.J. Complementary livelihood capital as a means to enhance adaptive capacity: A case of the Loess Plateau, China. Global Environ. Chang. 2017, 47, 143–152. [Google Scholar] [CrossRef]
- Barnett, J.; O’Neill, S.J. Islands, resettlement and adaptation. Nat. Clim. Chang. 2012, 2, 8–10. [Google Scholar] [CrossRef]
Variables | Indicator | Indicator Description | Weight |
---|---|---|---|
Basic material needs for a good life | Per capita net income | The actual amount of per capita net income (CNY) | 0.166 |
The number of durable goods | The number of durable goods owned by household (pieces) | 0.098 | |
Non-agricultural income | The amount of household income excluding agricultural income (CNY) | 0.087 | |
Freedom of choice and action | Income diversity index | Diversity level of a rural household’s income (%) | 0.078 |
Distance from roads | Distance to the main road of the address (m) | 0.073 | |
Train | Family members receive training (0 for no; 1 for yes) | 0.071 | |
Health | Medical expenses | Medical expenses as a proportion of total consumption (%) | 0.068 |
Self-rated health of members | Poor health, fair health, or good health | 0.067 | |
Social relation | Number of cadres | Number of cadres among relatives (persons) | 0.060 |
Get help | Number of households available to provide help | 0.055 | |
Number of cooperatives | Number of types of cooperatives involved (types) | 0.054 | |
Security | Housing security | The housing area (m2) | 0.052 |
Water security | Whether has tap water (0 for no; 1 for yes) | 0.043 | |
Food security | Crop yield per unit of cultivated land in the survey year (kg) | 0.028 |
Variables | Description | Mean | Standard Deviation |
---|---|---|---|
Total dependence (%) (Natural resource dependence) | (Food dependence + energy dependence + income dependence)/3 | 0.133 | 0.163 |
Food dependence (%) | The proportion of self-sufficient food income to the family’s annual total food expenditure | 0.053 | 0.156 |
Energy dependence (%) | The proportion of the firewood collection amount to the family’s annual energy consumption expenditure | 0.177 | 0.280 |
Income dependence (%) | The proportion of the income from agroforestry and livestock to the family’s total income | 0.167 | 0.253 |
Factor | Eigenvalue | Proportion | Cumulative | Factor | Eigenvalue | Proportion | Cumulative |
---|---|---|---|---|---|---|---|
Per capita net income | 2.327 | 0.166 | 0.166 | Self-rated health of members | 0.934 | 0.067 | 0.708 |
The number of durable goods | 1.367 | 0.098 | 0.264 | Number of cadres | 0.842 | 0.060 | 0.768 |
Non-agricultural income | 1.221 | 0.087 | 0.351 | Get help | 0.772 | 0.055 | 0.823 |
Income diversity index | 1.091 | 0.078 | 0.429 | Number of cooperatives | 0.752 | 0.054 | 0.877 |
Distance from roads | 1.024 | 0.073 | 0.502 | Housing security | 0.732 | 0.052 | 0.929 |
Train | 0.997 | 0.071 | 0.573 | Water security | 0.595 | 0.043 | 0.972 |
Medical expenses | 0.952 | 0.068 | 0.641 | Food security | 0.395 | 0.028 | 1.000 |
Variables | Description | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
Whether relocated | Relocated household = 1; otherwise = 0 | 0.699 | 0.459 | 0 | 1 |
Relocation nature | Voluntary relocation = 1; involuntary relocation = 0 | 0.840 | 0.363 | 0 | 1 |
Relocation type | Centralized resettlement = 1; Scattered resettlement = 0 | 0.758 | 0.429 | 0 | 1 |
Education level | Average years of education for household members | 6.180 | 2.654 | 0 | 13.5 |
Household size | Number of household members (persons) | 4.496 | 1.608 | 1 | 9 |
Dependence ratio | The proportion of children and elderly to the total workforce (%) | 0.277 | 0.225 | 0 | 1 |
Phone charge | Household members last-month phone charge (CNY) | 228.122 | 357.361 | 0 | 5000 |
Social support | The amount of money available for help (CNY) | 61.072 | 185.960 | 0 | 4542 |
Experience | Types of experiences for household members (1. Village cadres; 2. Technician, teacher, or doctors; 3. Enterprise employees; 4. Soldiers; and 5. No experience above) | 0.498 | 0.841 | 0 | 5 |
Loan | The possibility of loan (Definitely can = 1; More likely = 2; Generally = 3; Less likely = 4; and Certainly cannot = 5) | 2.570 | 1.348 | 1 | 5 |
Whether Relocated | Relocation Nature | Relocation Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Indices | Yes | No | t-Test | Voluntary | Involuntary | t-Test | Centralized | Scattered | t-Test |
Total dependence | 0.087 | 0.238 | 12.089 *** | 0.075 | 0.161 | 5.082 *** | 0.071 | 0.141 | 4.992 *** |
Income dependence | 0.131 | 0.252 | 5.758 *** | 0.120 | 0.196 | 2.672 *** | 0.124 | 0.152 | 1.185 |
Food dependence | 0.032 | 0.101 | 5.259 *** | 0.032 | 0.036 | 0.235 | 0.023 | 0.062 | 2.842 *** |
Energy dependence | 0.097 | 0.363 | 12.365 *** | 0.072 | 0.252 | 6.091 *** | 0.065 | 0.208 | 5.902 *** |
Whether Relocated | Relocation Nature | Relocation Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Indices | Yes | No | t-Test | Voluntary | Involuntary | t-Test | Centralized | Scattered | t-Test |
Overall SHWB | 0.280 | 0.308 | 5.387 *** | 0.277 | 0.307 | 3.789 *** | 0.274 | 0.304 | 4.858 *** |
Income and physical needs | 0.041 | 0.045 | 2.478 ** | 0.040 | 0.044 | 1.692 * | 0.039 | 0.046 | 3.500 *** |
Freedom of choice and action | 0.107 | 0.127 | 6.140 *** | 0.105 | 0.128 | 4.911 *** | 0.103 | 0.123 | 5.196 *** |
Health | 0.081 | 0.076 | −1.625 | 0.081 | 0.083 | 0.356 | 0.080 | 0.086 | 1.464 |
Social relations | 0.041 | 0.044 | 1.601 | 0.042 | 0.037 | −1.748 * | 0.041 | 0.040 | −0.510 |
Security | 0.010 | 0.016 | 6.838 *** | 0.009 | 0.015 | 5.245 *** | 0.010 | 0.010 | −0.336 |
Variables | Local Households | Relocated Households | Total Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
Total dependence | 0.170 * | 0.352 *** | 0.337 *** | |||||||||
Food dependence | 0.117 | 0.157 ** | 0.192 *** | |||||||||
Energy dependence | 0.009 | 0.200 *** | 0.156 *** | |||||||||
Income dependence | 0.126 ** | 0.117 *** | 0.159 *** | |||||||||
Education level | 0.022 *** | 0.021 *** | 0.021 *** | 0.022 *** | 0.016 *** | 0.017 *** | 0.016 *** | 0.016 *** | 0.020 *** | 0.022 *** | 0.021 *** | 0.021 *** |
Household size | 0.023 ** | 0.022 * | 0.024 ** | 0.022 * | −0.003 | −0.001 | −0.002 | −0.002 | 0.006 | 0.006 | 0.007 | 0.005 |
Dependence ratio | 0.000 | 0.003 | 0.018 | 0.012 | −0.005 | −0.009 | −0.004 | −0.010 | −0.002 | 0.007 | 0.003 | 0.010 |
Phone charge | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 * | 0.000 | 0.000 * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Social support | −0.000 | −0.000 | −0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Experience | 0.038 ** | 0.037 | 0.034 | 0.033 | 0.007 | 0.004 | 0.003 | 0.008 | 0.019 * | 0.016 | 0.017 * | 0.018 * |
Loan | −0.031 | −0.030 ** | −0.032 ** | −0.031 ** | −0.034 *** | −0.035 *** | −0.032 *** | −0.036 *** | −0.036 *** | −0.038 *** | −0.037 *** | −0.039 *** |
Constant | −0.129 | −0.089 | −0.071 | −0.118 | −0.050 | −0.026 | −0.045 | −0.027 | −0.092 ** | −0.058 | −0.078 * | −0.068 |
R2 | 0.171 | 0.166 | 0.158 | 0.179 | 0.196 | 0.152 | 0.194 | 0.158 | 0.222 | 0.182 | 0.200 | 0.195 |
N | 193 | 193 | 193 | 193 | 450 | 450 | 450 | 450 | 643 | 643 | 643 | 643 |
Variables | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 | Model 21 | Model 22 | Model 23 | Model 24 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total dependence | 0.250 *** | 0.293 *** | 0.327 *** | |||||||||
Food dependence | 0.133 ** | 0.152 ** | 0.133 * | |||||||||
Energy dependence | 0.094 *** | 0.162 *** | 0.185 *** | |||||||||
Income dependence | 0.120 *** | 0.092 ** | 0.110 *** | |||||||||
Whether relocated | ||||||||||||
Relocated households | −0.075 *** | −0.104 *** | −0.088 *** | −0.098 *** | ||||||||
Relocation nature | ||||||||||||
Voluntary relocation | −0.101 *** | −0.124 *** | −0.099 *** | −0.118 *** | ||||||||
Relocation type | ||||||||||||
Centralized resettlement | −0.036 * | −0.053 ** | −0.034 * | −0.054 *** | ||||||||
Education level | 0.018 *** | 0.018 *** | 0.018 *** | 0.018 *** | 0.015 *** | 0.016 *** | 0.015 *** | 0.015 *** | 0.016 *** | 0.016 *** | 0.016 *** | 0.016 *** |
Household size | 0.007 | 0.007 | 0.008 | 0.006 | −0.004 | −0.003 | −0.003 | −0.003 | −0.003 | −0.001 | −0.002 | −0.002 |
Dependence ratio | −0.010 | −0.008 | −0.007 | −0.005 | 0.000 | −0.000 | 0.001 | −0.003 | −0.001 | −0.003 | −0.000 | −0.004 |
Phone charge | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 * | 0.000 | 0.000 | 0.000 | 0.000 * | 0.000 | 0.000 * | 0.000 |
Social support | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Experience | 0.018 * | 0.016 | 0.016 | 0.017 * | 0.007 | 0.005 | 0.003 | 0.007 | 0.006 | 0.004 | 0.003 | 0.007 |
Loan | −0.034 *** | −0.035 *** | −0.035 *** | −0.036 *** | −0.036 *** | −0.037 *** | −0.035 *** | −0.038 *** | −0.033 *** | −0.034 *** | −0.032 *** | −0.035 *** |
Constant | −0.020 | 0.028 | 0.004 | 0.016 | 0.059 | 0.101 | 0.061 | 0.096 * | −0.023 | 0.012 | −0.019 | 0.011 |
R2 | 0.239 | 0.221 | 0.224 | 0.230 | 0.226 | 0.183 | 0.223 | 0.200 | 0.202 | 0.164 | 0.199 | 0.171 |
N | 643 | 643 | 643 | 643 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 |
Variables | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 | Model 21 | Model 22 | Model 23 | Model 24 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total dependence | 2.396 *** | 2.799 *** | 3.094 *** | |||||||||
Food dependence | 1.160 ** | 1.401 * | 1.138 | |||||||||
Energy dependence | 1.055 *** | 1.459 *** | 1.626 *** | |||||||||
Income dependence | 1.128 *** | 1.013 ** | 1.239 *** | |||||||||
Whether relocated | ||||||||||||
Relocated households | −0.614 *** | −0.888 *** | −0.701 *** | −0.836 *** | ||||||||
Relocation nature | ||||||||||||
Voluntary relocation | −0.931 *** | −1.163 *** | −0.964 *** | −1.058 *** | ||||||||
Relocation type | ||||||||||||
Centralized resettlement | −0.381 * | −0.548 *** | −0.386 * | −0.554 *** | ||||||||
Education level | 0.150 *** | 0.146 *** | 0.148 *** | 0.148 *** | 0.147 *** | 0.148 *** | 0.147 *** | 0.149 *** | 0.148 *** | 0.150 *** | 0.149 *** | 0.148 *** |
Household size | 0.051 | 0.053 | 0.064 | 0.048 | −0.007 | −0.001 | 0.004 | −0.005 | 0.004 | 0.016 | 0.017 | 0.006 |
Dependence ratio | −0.006 | −0.019 | 0.013 | 0.027 | −0.008 | −0.046 | 0.007 | −0.033 | −0.045 | −0.108 | −0.024 | −0.078 |
Phone charge | 0.000 * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 * | 0.000 |
Social support | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Experience | 0.106 | 0.073 | 0.082 | 0.094 | 0.033 | 0.010 | 0.001 | 0.034 | 0.028 | 0.002 | −0.009 | 0.035 |
Loan | −0.330 *** | −0.332 *** | −0.328 *** | −0.339 *** | −0.369 *** | −0.383 *** | −0.367 *** | −0.388 *** | −0.338 *** | −0.345 *** | −0.334 *** | −0.354 *** |
R2 | 0.021 | 0.019 | 0.020 | 0.020 | 0.019 | 0.017 | 0.019 | 0.017 | 0.018 | 0.014 | 0.017 | 0.016 |
N | 643 | 643 | 643 | 643 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; He, L.; Xu, J.; Xu, D. Linking Natural Resource Dependence to Sustainable Household Wellbeing: A Case Study in Western China. Agriculture 2023, 13, 1935. https://doi.org/10.3390/agriculture13101935
Liu W, He L, Xu J, Xu D. Linking Natural Resource Dependence to Sustainable Household Wellbeing: A Case Study in Western China. Agriculture. 2023; 13(10):1935. https://doi.org/10.3390/agriculture13101935
Chicago/Turabian StyleLiu, Wei, Liyuan He, Jie Xu, and Dingde Xu. 2023. "Linking Natural Resource Dependence to Sustainable Household Wellbeing: A Case Study in Western China" Agriculture 13, no. 10: 1935. https://doi.org/10.3390/agriculture13101935
APA StyleLiu, W., He, L., Xu, J., & Xu, D. (2023). Linking Natural Resource Dependence to Sustainable Household Wellbeing: A Case Study in Western China. Agriculture, 13(10), 1935. https://doi.org/10.3390/agriculture13101935