Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring
- (1)
- The application of machine learning techniques to examine the key physiological development and production variables of crops.
- (2)
- The use of datasets obtained from multiple sources and sensors to enhance crop mapping.
- (3)
- Advanced target recognition algorithm techniques for weed and disease identification.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agriculture 2022, 12, 1707. [Google Scholar] [CrossRef]
- Ibrahim, S. Improving Land Use/Cover Classification Accuracy from Random Forest Feature Importance Selection Based on Synergistic Use of Sentinel Data and Digital Elevation Model in Agriculturally Dominated Landscape. Agriculture 2023, 13, 98. [Google Scholar] [CrossRef]
- Gao, C.; Ji, X.; He, Q.; Gong, Z.; Sun, H.; Wen, T.; Guo, W. Monitoring of Wheat Fusarium Head Blight on Spectral and Textural Analysis of UAV Multispectral Imagery. Agriculture 2023, 13, 293. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, P.; Dong, S.; Liu, Y.; Pan, Y.; Li, C. Extraction of Cropland Spatial Distribution Information Using Multi-Seasonal Fractal Features: A Case Study of Black Soil in Lishu County, China. Agriculture 2023, 13, 486. [Google Scholar] [CrossRef]
- Hu, J.; Yue, J.; Xu, X.; Han, S.; Sun, T.; Liu, Y.; Feng, H.; Qiao, H. UAV-Based Remote Sensing for Soybean FVC, LCC, and Maturity Monitoring. Agriculture 2023, 13, 692. [Google Scholar] [CrossRef]
- Li, H.; Shi, L.; Fang, S.; Yin, F. Real-Time Detection of Apple Leaf Diseases in Natural Scenes Based on YOLOv5. Agriculture 2023, 13, 878. [Google Scholar] [CrossRef]
- Li, Q.; Tian, J.; Tian, Q. Deep Learning Application for Crop Classification via Multi-Temporal Remote Sensing Images. Agriculture 2023, 13, 906. [Google Scholar] [CrossRef]
- Yurochka, S.S.; Dovlatov, I.M.; Pavkin, D.Y.; Panchenko, V.A.; Smirnov, A.A.; Proshkin, Y.A.; Yudaev, I. Technology of Automatic Evaluation of Dairy Herd Fatness. Agriculture 2023, 13, 1363. [Google Scholar] [CrossRef]
- Kumar, R.A.; Vasantha, S.; Gomathi, R.; Hemaprabha, G.; Alarmelu, S.; Srinivasa, V.; Vengavasi, K.; Alagupalamuthirsolai, M.; Hari, K.; Palaniswami, C.; et al. Rapid and Non-Destructive Methodology for Measuring Canopy Coverage at an Early Stage and Its Correlation with Physiological and Morphological Traits and Yield in Sugarcane. Agriculture 2023, 13, 1481. [Google Scholar] [CrossRef]
- Guo, W.; Sun, H.; Qiao, H.; Zhang, H.; Zhou, L.; Dong, P.; Song, X. Spectral Detection of Peanut Southern Blight Severity Based on Continuous Wavelet Transform and Machine Learning. Agriculture 2023, 13, 1504. [Google Scholar] [CrossRef]
- Fan, X.; Guan, Z. VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition. Agriculture 2023, 13, 1606. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, S.; Ye, Q.; Li, X.; Jiao, W. Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning. Agriculture 2022, 12, 1188. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; Jiao, W.; Yang, K.; Li, Y.; Fang, S. Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture 2022, 12, 1447. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Guo, Y.; Ma, Y.; Cao, W.; Chen, D.; Yang, S.; Gao, R. Weed Detection in Peanut Fields Based on Machine Vision. Agriculture 2022, 12, 1541. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, Q.; Qiao, B.; Wu, Y.; Zuo, X.; Xie, Y.; Lian, Y. A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data. Agriculture 2022, 12, 1658. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, H.; Han, S.; Shi, Z.; Xu, H.; Liu, Y.; Feng, H.; Zhou, C.; Yue, J. Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning. Agriculture 2022, 13, 110. [Google Scholar] [CrossRef]
Article | Agricultural Activities/Variables | Optical Sensors | Platforms | Machine Learning Methods |
---|---|---|---|---|
[1] | Winter wheat yield prediction | MODIS | Satellite | LSTM, RF, SVR, PLSR, and XGBoost |
[2] | Land use/cover classification | Sentinel-2 MSI | Satellite | RF |
[3] | Wheat fusarium head blight | Multispectral imaging sensor | UAV | KNN, SVM, XGBoost |
[4] | Cropland spatial distribution | Landsat 8 OLI | Satellite | Blanket covering method |
[5] | Soybean FVC, LCC, and maturity | SONY DSC-QX100 | UAV | RF, PLSR, GPR, MSR |
[6] | Apple leaf diseases | Canon Rebel T5i DSLR | Field | BTC-YOLOv5s, YOLOv5, SSD, R-CNN, Faster R-CNN, YOLOv4-tiny, and YOLOx, YOLOx-s |
[7] | Crop classification | Sentinel-2 | Satellite | 1D-CNNs, LSTM, 2D-CNNs, 3D-CNNs, and ConvLSTM2D |
[8] | Dairy herd fatness | 3D TOF sensor | Field | BCS |
[9] | Sugarcane dry matter and cane yield | Mobile phone camera | Field | Two-Way cluster |
[10] | Peanut southern blight severity | ASD Field Spec3 VNIR-SWIR sensor | Field | SVM, DT, and KNN |
[11] | Corn diseases | digital camera | Field | VGNet, VGG16 |
[12] | Soil moisture content | ASD Field Spec3 VNIR-SWIR sensor | Field | PCA, PCR, PLSR, and BP-ANN |
[13] | Rice yield | Mini-MCA 1000 | UAV | TCT |
[14] | Weed detection in peanut fields | Fuji Finepixs4500 | Field | YOLOv4-Tiny, YOLOv5s, Swin-Transformer, Faster-RCNN, YOLOv6-Tiny, and EM-YOLOv4-Tiny |
[15] | Vegetation canopy reflectance angle normalization | GOCI | Satellite | SANM |
[16] | Soybean maturity | SONY DSC-QX100 | UAV | SVM, RF, InceptionResNetV2, MobileNetV2, Alexnet, ResNet50, and DS-SoybeanNet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Zhou, C.; Feng, H.; Yang, Y.; Zhang, N. Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring. Agriculture 2023, 13, 1970. https://doi.org/10.3390/agriculture13101970
Yue J, Zhou C, Feng H, Yang Y, Zhang N. Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring. Agriculture. 2023; 13(10):1970. https://doi.org/10.3390/agriculture13101970
Chicago/Turabian StyleYue, Jibo, Chengquan Zhou, Haikuan Feng, Yanjun Yang, and Ning Zhang. 2023. "Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring" Agriculture 13, no. 10: 1970. https://doi.org/10.3390/agriculture13101970
APA StyleYue, J., Zhou, C., Feng, H., Yang, Y., & Zhang, N. (2023). Novel Applications of Optical Sensors and Machine Learning in Agricultural Monitoring. Agriculture, 13(10), 1970. https://doi.org/10.3390/agriculture13101970