Recombinase Polymerase Amplification Assay for Rapid Field Diagnosis of Stewart’s Wilt of Corn Pathogen Pantoea stewartii subsp. stewartii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Storage of Bacterial Strains
2.2. Validation of Primers for the Detection of P. stewartii subsp. stewartii
2.3. Inoculation of Maize Leaves and Seeds with P. stewartii subsp. stewartii
2.4. RPA Primer/Exo Probe Design and Assay
2.5. RPA/Lateral Flow Dipstick (LFD) Assay for On-Site Detection of P. stewartii subsp. stewartii
3. Results
3.1. Validation of Unique Primer Sets for Detection of P. stewartii subsp. stewartii
3.2. Optimization of Simplex RPA Assay for Detection of P. stewartii subsp. stewartii
3.3. RPA/LFD Assay for Point-of-Need Detection of P. stewartii subsp. stewartii
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Suparyono; Pataky, J.K. Effect of disease onset and severity of Stewart’s and Goss’ wilt on sweet corn. Phytopathology 1986, 76, 1079. [Google Scholar]
- Kuhar, T.P.; Stivers-Young, L.J.; Hoffmann, M.P.; Taylor, A.G. Control of corn flea beetle and Stewart’s wilt in sweet corn with imidacloprid and thiamethoxam seed treatments. Crop Prot. 2002, 21, 25–31. [Google Scholar] [CrossRef]
- Suparyono; Pataky, J.K. Influence of host resistance and growth stage at the time of inoculation on Stewart’s wilt and Goss’ wilt development and sweet corn hybrid yield. Plant Dis. 1989, 73, 339–345. [Google Scholar] [CrossRef]
- Cui, D.; Huang, M.-T.; Hu, C.-Y.; Su, J.-B.; Lin, L.-H.; Javed, T.; Deng, Z.-H.; Gao, S.-J. First report of Pantoea stewartii subsp. stewartii causing bacterial leaf wilt of sugarcane in China. Plant Dis. 2021, 105, 1190. [Google Scholar] [CrossRef]
- Ibrahim, R.; Ismail, S.I.; Ina-Salwany, M.Y.; Zulperi, D. Biology, diagnostics, pathogenomics and mitigation strategies of jackfruit-bronzing bacterium Pantoea stewartii subspecies stewartii: What do we know so far about this culprit? Horticulturae 2022, 8, 702. [Google Scholar] [CrossRef]
- Choi, O.; Kim, J. Pantoea stewartii causing Stewart’s wilt on Dracaena sanderiana in Korea. J. Phytopathol. 2013, 161, 578–581. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Grégoire, J.C.; Jaques Miret, J.A.; MacLeod, A.; Navajas-Navarro, M. EFSA Panel on Plant Health (EFSA PLH Panel): Pest categorization of Pantoea stewartii subsp. stewartii. EFSA J. 2018, 16, e05356. [Google Scholar] [PubMed]
- Coplin, D.L.; Majerczak, D.R.; Zhang, Y.; Kim, W.S.; Jock, S.; Geider, K. Identification of Pantoea stewartii subsp. stewartii by PCR and strain differentiation by PFGE. Plant Dis. 2002, 86, 304–311. [Google Scholar] [CrossRef]
- Bicudo, E.L.; Macedo, V.O.; Carrara, M.A.; Castro, F.F.; Rage, I.R. Nosocomial outbreak of Pantoea agglomerans in a pediatric urgent care center. Braz. J. Infect. Dis. 2007, 11, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Delétoile, A.; Decré, D.; Courant, S.; Passet, V.; Audo, J.; Grimont, P.; Arlet, G.; Brisse, S. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. J. Clin. Microbiol. 2009, 47, 300–310. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef]
- Brady, C.; Venter, S.; Cleenwerck, I.; Vancanneyt, M.; Swings, J.; Coutinho, T. A FAFLP system for the improved identification of plant-pathogenic and plant-associated species of the genus Pantoea. Syst. Appl. Microbiol. 2007, 30, 413–417. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 2008, 31, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Lamka, G.L. Development of an immunosorbent assay for seed-borne Erwinia stewartii in corn seed. Phytopathology 1990, 81, 839–846. [Google Scholar] [CrossRef]
- Tambong, J.T.; Mwange, K.N.; Bergeron, M.; Ding, T.; Mandy, F.; Reid, L.M.; Zhu, X. Rapid detection and identification of the bacterium Pantoea stewartii in maize by TaqMan® real-time PCR assay targeting the cpsD gene. J. Appl. Microbiol. 2008, 104, 1525–1537. [Google Scholar] [CrossRef]
- Xu, R.; Chen, Q.; Robleh Djama, Z.; Tambong, J.T. Miniprimer PCR assay targeting multiple genes: A new rapid and reliable tool for genotyping Pantoea stewartii subsp. stewartii. Lett. Appl. Microbiol. 2010, 50, 216–222. [Google Scholar] [CrossRef]
- Wilson, W.J.; Wiedmann, M.; Dillard, H.R.; Batt, C.A. Identification of Erwinia stewartii by a ligase chain reaction assay. Appl. Environ. Microbiol. 1994, 60, 278–284. [Google Scholar] [CrossRef]
- Wensing, A.; Zimmermann, S.; Geider, K. Identification of the corn pathogen Pantoea stewartii by mass spectrometry of whole-cell extracts and its detection with novel PCR primers. Appl. Environ. Microbiol. 2010, 76, 6248–6256. [Google Scholar] [CrossRef] [PubMed]
- Mergaert, J.; Verdonck, L.; Kersters, K. Transfer of Erwinia ananas (synonym Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int. J. Syst. Bacteriol. 1993, 43, 162–173. [Google Scholar]
- Stumpf, S.; Kvitko, B.; Gitatitis, R.; Dutta, B. Isolation and characterization of novel Pantoea stewartii subsp. indologenes strains exhibiting center rot in onion. Plant Dis. 2018, 102, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Gehring, I.; Wensing, A.; Gernold, M.; Wiedemann, W.; Coplin, D.L.; Geider, K. Molecular differentiation of Pantoea stewartii subsp. indologenes from subspecies stewartii and identification of new isolates from maize seeds. J. Appl. Microbiol. 2014, 116, 1553–1562. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Ochoa-Corona, F.M.; Paret, M.L. Recombinase polymerase amplification applied to plant virus detection and potential implications. Anal. Biochem. 2018, 546, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Strayer-Scherer, A.; Jones, J.B.; Paret, M.L. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 2019, 109, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Hu, T.; Yang, X.; Shen, D.; Jiao, B.; Tian, W.; Xu, Y. A recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalis. PeerJ 2019, 7, e8083. [Google Scholar] [CrossRef]
- Hu, S.; Yan, C.; Yu, H.; Zhang, Y.; Zhang, C.-Q. Establishment of the recombinase polymerase amplification-lateral flow dipstick (RPA/LFD) detection technique for Fusarium oxysporum. Plant Dis. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Ju, Y.; Li, C.; Shen, P.; Wan, N.; Han, W.; Pan, Y. Rapid and visual detection of Verticillium dahliae using recombinase polymerase amplification combined with lateral flow dipstick. Crop Prot. 2020, 136, 105226. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, I.S.; Ju, H.J.; Jeong, R.D. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol. Cell. Probes 2021, 57, 101727. [Google Scholar] [CrossRef] [PubMed]
- Kalischuk, M.; Hendricks, K.; Hochmuth, R.; Freeman, J.; Roberts, P.D.; Paret, M. A portable recombinase polymerase amplification assay for the rapid detection of cucurbit leaf crumple virus in watermelon leaves and fruits. J. Plant Pathol. 2022, 104, 215–224. [Google Scholar] [CrossRef]
- Wang, T.M.; Yang, J.T. Visual DNA diagnosis of tomato yellow leaf curl virus with integrated recombinase polymerase amplification and a gold-nanoparticle probe. Sci. Rep. 2019, 9, 15146. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Jiang, J.; An, M.; Xia, Z.; Wu, Y. Recombinase polymerase amplification assay for rapid detection of maize chlorotic mottle virus in maize. Arch. Virol. 2019, 164, 2581–2584. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Pathaw, N.; Wangkhem, B.; Jackson, K.S.; Devi, K.S.; Roy, S.S.; Singh, A.R.; Singh, R.; Banerjee, A.; Kumar, S.; et al. Simple template-based reverse transcription-recombinase polymerase amplification assay for routine diagnosis of citrus tristeza virus. Lett. Appl. Microbiol. 2023, 76, ovac060. [Google Scholar]
- Ju, Y.; Lin, Y.; Yang, G.; Wu, H.; Pan, Y. Development of recombinase polymerase amplification assay for rapid detection of Meloidogyne incognita, M. javanica, M. arenaria, and M. enterolobii. Eur. J. Plant Pathol. 2019, 155, 1155–1163. [Google Scholar] [CrossRef]
- Boluk, G.; Dobhal, S.; Crockford, A.B.; Melzer, M.; Alvarez, A.M.; Arif, M. Genome-informed recombinase polymerase amplification assay coupled with a lateral flow device for in-field detection of Dickeya species. Plant Dis. 2020, 104, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Larrea-Sarmiento, A.; Stack, J.P.; Alvarez, A.M.; Arif, M. Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Sci. Rep. 2021, 11, 12017. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.G.; Miles, T.D.; Bilodeau, G.J.; Woods, P.; Blomquist, C.; Martin, F.N.; Chilvers, M.I. Validation of a preformulated, field deployable, recombinase polymerase amplification assay for Phytophthora species. Plants 2020, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Shen, D.; Dai, T.; Lu, X.; Xu, H.; Dou, D. Rapid and equipment-free detection of Phytophthora capsici using lateral flow strip-based recombinase polymerase amplification assay. Lett. Appl. Microbiol. 2019, 69, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Aiying, W.; Ju, L.; Cilin, W.; Yuxuan, H.; Baojun, Y.; Jian, T.; Shuhua, L. Establishment and application of the Recombinase-Aided Amplification-Lateral Flow Dipstick detection method for Pantoea ananatis on rice. Australas. Plant Pathol. 2023, 52, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, H.P.; Reynoso, G.; Thomas, B.J.; Mullins, C.M.; Smith, C.; Gentzel, I.N.; Giese, L.A.; Mackey, D.; Stevens, A.M. 2022. The transcription factor Lrp of Pantoea stewartii subsp. stewartii controls capsule production, motility, and virulence important for in planta growth. Front. Microbiol. 2022, 12, 806504. [Google Scholar] [CrossRef] [PubMed]
- Ovesná, J.; Kaminiaris, M.D.; Tsiropoulos, Z.; Collier, R.; Kelly, A.; De Mey, J.; Pollet, S. Applicability of smart tools in vegetable disease diagnostics. Agronomy 2023, 13, 1211. [Google Scholar] [CrossRef]
- Seder, I.; Coronel-Tellez, R.; Helalat, S.H.; Sun, Y. Fully integrated sample-in-answer-out platform for viral detection using digital reverse transcription recombinase polymerase amplification (dRT-RPA). Biosens. Bioelectron. 2023, 237, 115487. [Google Scholar] [CrossRef]
- Sánchez, E.; Ali, Z.; Islam, T.; Mahfouz, M. A CRISPR-based lateral flow assay for plant genotyping and pathogen diagnostics. Plant Biotechnol. J. 2022, 20, 2418–2429. [Google Scholar] [CrossRef] [PubMed]
- CABI. Pantoea stewartii (bacterial wilt of maize). In Crop Protection Compendium; CAB International: Wallingford, UK, 2018; Available online: https://www.cabi.org/cpc/ (accessed on 28 August 2023).
- Pal, N.; Block, C.C.; Gardner, C.A. A real-time PCR differentiating Pantoea stewartii subsp. stewartii from P. stewartii subsp. indologenes in corn deed. Plant Dis. 2019, 103, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Roper, M.C. Pantoea stewartii subsp. stewartii: Lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol. 2011, 12, 628–637. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species/Strain | Repository a | Type Strain GenBank Acc. No. (Genome Size) |
---|---|---|
Pantoea stewartii subsp. stewartii | ||
LX-2-8.19 | Field isolate, Sanya, China | DC283 (GCA_000248395.2, 5 Mb) |
ATCC 8199 | ATCC | |
ATCC 29227 | ATCC | |
ATCC 8200 | ATCC | |
ATCC 29228 | ATCC | |
Pantoea stewartii subsp. indologenes | ||
ATCC 35396 | ATCC | LMG 2632 (GCA_000757405.2, 4.7 Mb) |
4270-6 | Guangzhou Customs, China | |
Pantoea stewartii | ||
4270-4 | Guangzhou Customs, China | ZJ-FGZX1 (GCA_011044475.1, 5 Mb) |
1082-3 | Guangzhou Customs, China | |
Pantoea agglomerans 1848-Lin | Guangzhou Customs, China | ZJU23 (GCA_021559955.1, 5.1 Mb) |
Pantoea ananatis DSM 30070 | DSMZ | LMG 5342 (GCA_000283875.1, 4.9 Mb) |
Pantoea cypripedii ICMP 1591 | ICMP | LMG 2657 (GCA_002095535.1, 6.6 Mb) |
Acidovorax avenae subsp. avenae ATCC 19307 | ATCC | AA81_1 (GCA_003029685.1, 5.8 Mb) |
Burkholderia andropogonis ATCC 23060 | ATCC | Ba3549 (GCA_000566705.1, 6.2 Mb) |
Burkholderia cepacia LMG 1222 | LMG | BC16 (CA_009586235.1, 3.4 Mb) |
Burkholderia gladioli NCPPB 1888 | NCPPB | BBB-01 (GCA_016698705.1, 8.2 Mb) |
Clavibacter michiganensis subsp. nebraskensis NCPPB 2578 | NCPPB | 61-1 (GCA_009739635.2, 3.1 Mb) |
Dickeya chrysanthemi ICMP 10850 | ICMP | Ech1591 (GCA_000023565.1, 4.8 Mb) |
Pectobacterium atrosepticum NCPPB 549 | NCPPB | JG10-08 (GCA_000696465.1, 5.0 Mb) |
Pectobacterium carotovorum subsp. carotovorum 2412-1 | Field isolate, Sanya, China | PCCS1 (GCA_015277635.1, 4.9 Mb) |
Pseudomonas fluorescens LX-2 | Field isolate, Sanya, China | 2P24 (GCA_002865505.1, 6.6 Mb) |
Pseudomonas fuscovaginae NCPPB 3734 | NCPPB | CB98818 (GCA_000280575.1, 6.5 Mb) |
Pseudomonas syringae pv. panici 2357-1 | Field isolate, Sanya, China | LMG 2367 (GCA_000282735.1, 6 Mb) |
Pseudomonas syringae pv. syringae LMG 5083 | LMG | B48 (GCA_030035225.1, 6.1 Mb) |
Xanthomonas albilineans ICMP196 | ICMP | Xa-FJ1 (GCA_009931595.1, 3.8 Mb) |
Xanthomonas axonopodis pv. vasculorum ATCC13901 | ATCC | NCPPB 796 (GCA_013177355.1, 4.9 Mb) |
Primer/Probe | Sequence (5′ → 3′) | Amplicon (bp) | Gene (GenBank Acc. No.) |
---|---|---|---|
AB inter F1 | TGGATTTTATGCTGTGGTACTATGAAAACGGT | 150 | methyl-accepting chemotaxis protein (mcp, DSJ_RS03345) |
AB inter R1 | TTGAATAATAGGTAATCATTCTGTTTTGTCTGC | ||
AB inter F2 | AAATGGATTTTATGCTGTGGTACTATGAAAAC | 150 | |
AB inter R2 | AATAATAGGTAATCATTCTGTTTTGTCTGCACT | ||
GalE F1 | GAATTCATTATCCGTGATTTTGCCAAAG | 304 | UDP-glucose 4-epimerase (gale, DSJ_RS16255) |
GalE R1 | CTTTATAACCTTCAATTTTGTCCAGATGATC | ||
GalE F2 | GATGGTCGAATTCATTATCCGTGATTTTG | 311 | |
GalE R2 | TATAACCTTCAATTTTGTCCAGATGATCCAG | ||
MDC283galE | CGACCTGTTTGCCTCTCACT | 268 | |
DC283galEc | CATCAGCTTGGAGGTGCCA | ||
DC283galE | AATATTACGAAAATAACGTTGC | 182 | |
DC283galEc | CATCAGCTTGGAGGTGCCA | ||
p-g-F | GGGATTCACGCGTTTCATTTATTTGATCTTGC | 165 | glutamine:fructose-6-phosphate amino transferase (gfat, DSJ_RS02230) |
p-g-R | TCATGCAAATATCCTCAGTCAACTCGCCAAAA | ||
Pss F1 | TATTGATCGTATCCTCATTGTTGCTT | 189 | |
Pss R | GCGCTCTGGCTATATTGGGTTATTACGGCAC | ||
Pss F2 | GCTGCAGGTTATTGATCGTATCCTCATTG | 195 | |
Pss R | GCGCTCTGGCTATATTGGGTTATTACGGCAC | ||
EGaseUP | GGCGGCGGTGAAAGAGTT | 453 | DNA-directed RNA polymerase subunit beta (rpoB, DSJ_RS01980) |
EGaseNP | GATGCACCGACGGAAACAA | ||
cpsAB2313F | AGAAAACGCTGATGCCAGAC | 375 | Intergenic spacer region between stewartan (EPS) biosynthesis genes cpsA (DSJ_RS16295) and cpsB (DSJ_RS16315) |
cpsR | ACTATCCTGACTCAGGCACT | ||
CLL001-F | GGTAGAAAACGCTGATGCCAGACAGAACACCGTC | 256 | |
CLL001-R | AAGTAAACTATCCTGACTCAGGCACTGAACATG | ||
CL001-PIexo | GTACCACAGCATAAAATCCATTTATTCAACAAATC [FAM-dT][THF]CA[BHQ1-dT] AAAAAAGCGGTACGGC [C3Spacer] | ||
CL001-PII | FAM-TACCACAGCATAAAATCCATTTATTCAACAAATC [THF]CAAAAAAAGCGGTACGGC [C3Spacer] |
Bacterial Strains | Primer Pairs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AB Inter F1/R1 | AB Inter F2/R2 | GalE F1/R1 | GalE F2/R2 | MDC283galE /DC283galEc | DC283galE /DC283galEc | p-g-F/R | Pss F1/R | Pss F2/R | EGaseUP/NP | cpsAB2313F /cpsR | CL001-F/R | |
Pantoea stewartii subsp. stewartii LX-2-8.19 | ||||||||||||
P. stewartii subsp. stewartii ATCC 8199 | ||||||||||||
P. stewartii subsp. stewartii ATCC 8200 | ||||||||||||
P. stewartii subsp. stewartii ATCC 29227 | ||||||||||||
P. stewartii subsp. stewartii ATCC 29228 | ||||||||||||
P. stewartii subsp. indologenes ATCC 35396 | ||||||||||||
P. stewartii subsp. indologenes 4270-6 | ||||||||||||
P. stewartii 4270-4 | ||||||||||||
P. stewartii 1082-2 | ||||||||||||
P. agglomerans 1848-Lin | ||||||||||||
P. ananatis DSM 30070 | ||||||||||||
P. cypripedii ICMP 1591 | ||||||||||||
Acidovorax avenae subsp. avenae ATCC 19307 | ||||||||||||
Burkholderia andropogonis ATCC 23060 | ||||||||||||
Burkholderia cepacia LMG 122 | ||||||||||||
Burkholderia gladioli NCPPB1888 | ||||||||||||
Clavibacter michiganensis subsp. nebraskensis NCPPB2578 | ||||||||||||
Dickeya chrysanthemi ICMP10850 | ||||||||||||
Pectobacterium atrosepticum NCPPB 549 | ||||||||||||
Pectobacterium carotovorum subsp. carotovorum 2412-1 | ||||||||||||
Pseudomonas fluorescens LX-2 | ||||||||||||
Pseudomonas fuscovaginae NCPPB 3734 | ||||||||||||
Pseudomonas syringae pv. panici 2357-1 | ||||||||||||
Pseudomonas syringae pv. syringae LMG 5083 | ||||||||||||
Xanthomonas albilineans ICMP196 | ||||||||||||
Xanthomonas axonopodis pv. vasculorum ATCC 13901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Tian, Q.; Meng, Q.; Bao, X.; Xu, P.; Liu, J.; Zhao, W.; Wang, H. Recombinase Polymerase Amplification Assay for Rapid Field Diagnosis of Stewart’s Wilt of Corn Pathogen Pantoea stewartii subsp. stewartii. Agriculture 2023, 13, 1982. https://doi.org/10.3390/agriculture13101982
Cai L, Tian Q, Meng Q, Bao X, Xu P, Liu J, Zhao W, Wang H. Recombinase Polymerase Amplification Assay for Rapid Field Diagnosis of Stewart’s Wilt of Corn Pathogen Pantoea stewartii subsp. stewartii. Agriculture. 2023; 13(10):1982. https://doi.org/10.3390/agriculture13101982
Chicago/Turabian StyleCai, Lulu, Qian Tian, Qingqing Meng, Xiaoyang Bao, Peidong Xu, Ji Liu, Wenjun Zhao, and Hui Wang. 2023. "Recombinase Polymerase Amplification Assay for Rapid Field Diagnosis of Stewart’s Wilt of Corn Pathogen Pantoea stewartii subsp. stewartii" Agriculture 13, no. 10: 1982. https://doi.org/10.3390/agriculture13101982
APA StyleCai, L., Tian, Q., Meng, Q., Bao, X., Xu, P., Liu, J., Zhao, W., & Wang, H. (2023). Recombinase Polymerase Amplification Assay for Rapid Field Diagnosis of Stewart’s Wilt of Corn Pathogen Pantoea stewartii subsp. stewartii. Agriculture, 13(10), 1982. https://doi.org/10.3390/agriculture13101982