Agricultural Tractor Retail and Wholesale Residual Value Forecasting Model in Western Europe
Abstract
:1. Introduction
1.1. Previous Studies
1.2. Curent Issues
2. Goal
3. Materials and Methods
3.1. Dataset
3.2. Data Systemization and Processing
3.3. Data Analysis
3.3.1. Wholesale Residual Value Regression
3.3.2. Retail and Wholesale Residual Value Difference Regression
4. Results
4.1. Wholesale Residual Value Regression
4.2. Retail and Wholesale Residual Value Difference Regression
5. Discussion
5.1. Wholesale Residual Value Regression
5.2. Retail and Wholesale Residual Value Difference Regression
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kastens, T. Farm Machinery Operations Cost Calculations; Kansas State University: Manhattan, KS, USA, 1997. [Google Scholar]
- Edwards, W. FM1900/AgDM A3-30, Replacement Strategies for Farm Machinery; Iowa State University: Ames, IA, USA, 2019. [Google Scholar]
- U.S. Consumer Financial Protection Bureau What Is a Loan to Value Ratio and How Does It Relate to My Costs. Available online: https://www.consumerfinance.gov/ask-cfpb/what-is-a-loan-to-value-ratio-and-how-does-it-relate-to-my-costs-en-121/#:~:text=The%20loan%2Dto%2Dvalue%20(,will%20require%20private%20mortgage%20insurance (accessed on 1 July 2022).
- ECB Haircuts. Available online: https://www.ecb.europa.eu/ecb/educational/explainers/tell-me-more/html/haircuts.en.html (accessed on 3 July 2022).
- Nakamura, E. Pass-Through in Retail and Wholesale. Am. Econ. Rev. 2008, 98, 430–437. [Google Scholar] [CrossRef]
- Reid, D.W.; Bradford, G.L. On Optimal Replacement of Farm Tractors. Am. J. Agric. Econ. 1983, 65, 326–331. [Google Scholar] [CrossRef]
- Perry, G.M.; Bayaner, A.; Nixon, C.J. The Effect of Usage and Size on Tractor Depreciation. Am. J. Agric. Econ. 1986, 72, 317–325. [Google Scholar] [CrossRef]
- Hansen, L.; Lee, H. Estimating Farm Tractor Depreciation: Tax Implications. Can. J. Agric. Econ./Rev. Can. D’agroecon. 1991, 39, 463–479. [Google Scholar] [CrossRef]
- Cross, T.L.; Perry, G.M. Depreciation Patterns for Agricultural Machinery. Am. J. Agric. Econ. 1995, 77, 194–204. [Google Scholar] [CrossRef]
- Cross, T.L.; Perry, G.M. Remaining Value Functions for Farm Equipment. Appl. Eng. Agric. 1996, 12, 547–553. [Google Scholar] [CrossRef]
- Unterschultz, J.; Mumey, G. Reducing Investment Risk in Tractors and Combines with Improved Terminal Asset Value Forecasts. Can. J. Agric. Econ. 1996, 44, 295–309. [Google Scholar] [CrossRef]
- Wu, J.; Perry, G.M. Estimating Farm Equipment Depreciation: Which Functional Form Is Best? Am. J. Agric. Econ. 2004, 86, 483–491. [Google Scholar] [CrossRef]
- Fenollosa, M.; Guadalajara, N. An Empirical Depreciation Model for Agricultural Tractors in Spain. Span. J. Agric. Res. 2007, 5, 130–141. [Google Scholar] [CrossRef]
- Wilson, P.; Tolley, C. Estimating Tractor Depreciation and Implications for Farm Management Accounting. J. Farm Manag. 2004, 12, 5–16. [Google Scholar]
- Wilson, P. Estimating Tractor Depreciation: The Impact of Choice of Functional Form. J. Farm Manag. 2010, 13, 799–818. [Google Scholar]
- ASAE Standard D497.7; ASABE Agricultural Machinery Management Data. American Society of Agricultural and Biological Engineers: Joseph, MI, USA, 2020.
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management, 7th ed.; McGraw-Hill: New York, NY, USA, 2020. [Google Scholar]
- ASAE EP496.3; Agricultural Machinery Management. American Society of Agricultural and Biological Engineers: Joseph, MI, USA, 2006.
- Witte, F.; Back, H.; Sponagel, C.; Bahrs, E. Remaining Value Development of Tractors—A Call for the Application of a Differentiated Market Value Estimation. Agric. Eng. 2022, 77, 3273. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Sanchez-Guerrero, P. A Decision Support Tool for Buying Farm Tractors, Based on Predictive Analytics. Agriculture 2022, 12, 331. [Google Scholar] [CrossRef]
- Herranz-Matey, I.; Ruiz-Garcia, L. A New Method and Model for the Estimation of Residual Value of Agricultural Tractors. Agriculture 2023, 13, 409. [Google Scholar] [CrossRef]
- Herranz-Matey, I.; Ruiz-Garcia, L. Agricultural Combine Remaining Value Forecasting Methodology and Model (and Derived Tool). Agriculture 2023, 13, 894. [Google Scholar] [CrossRef]
- European Commission (EC). EC Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997; European Commission (EC): Brussels, Belgium, 1997. [Google Scholar]
- European Commission (EC). EC Directive 2000/25/EC of the European Parliament; European Commission (EC): Brussels, Belgium, 2000. [Google Scholar]
- European Commission (EC). EC Directive 2004/26/EC of the European Parliament and of the Council of 21 April 2004 Amending Directive 97/68/EC; European Commission EC: Brussels, Belgium, 2004. [Google Scholar]
- European Commission (EC). EC Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 Amending Directive 98/70/EC; European Commission (EC): Brussels, Belgium, 2009. [Google Scholar]
- Posada, F.; Chambliss, S.; Blumberg, K. Cost of Emission Reduction Technologies for Heavy Duty Diesel Vehicles; The International Council on Clean Transportation ICCT: Washington, DC, USA, 2016. [Google Scholar]
- Lynch, L.A.; Hunter, C.A.; Zigler, B.T.; Thomton, M.J.; Reznicek, E.P. On-Road Heavy-Duty Low-NOx Technology Cost Study. In National Renewable Energy Laboratory (NREL); U.S. Department of Energy: Washington, DC, USA, 2020. [Google Scholar]
- CEMA. Economic Press Release Tractor Registrations 2021; CEMA AISBL—European Agricultural Machinery: Brussels, Belgium, 2022. [Google Scholar]
- McCarthy, R.V.; McCarthy, M.M.; Ceccucci, W.; Halawi, L. Applying Predictive Analytics; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-14037-3. [Google Scholar]
Brand Id * | Cohort Id * | RMSE | RSqAdj | Observations |
---|---|---|---|---|
A | A|Bb | 0.0094 | 0.9944 | 19 |
A|Ea | 0.0559 | 0.9488 | 69 | |
A|Eb | 0.0674 | 0.9682 | 37 | |
A|Gb | 0.0535 | 0.9784 | 22 | |
B | B|Cb | 0.0049 | 0.9726 | 79 |
B|Eb | 0.0337 | 0.9649 | 38 | |
C | C|Ba | 0.0266 | 0.9835 | 71 |
C|Ca | 0.0192 | 0.9749 | 35 | |
C|Da | 0.1004 | 0.9741 | 56 | |
D | D|C0 | 0.0521 | 0.9756 | 93 |
D|E0 | 0.0262 | 0.9590 | 31 | |
D|F0 | 0.0413 | 0.9751 | 113 | |
D|G0 | 0.0167 | 0.9694 | 31 | |
E | E|Ba | 0.0196 | 0.9712 | 22 |
E|Ea | 0.0402 | 0.9745 | 23 | |
F | F|Eb | 0.0588 | 0.9777 | 52 |
F|Fb | 0.0470 | 0.9198 | 37 | |
F|Gb | 0.0175 | 0.9849 | 41 |
Model Type | Subtype | Analysis | Min RMSE | RSqAdj |
---|---|---|---|---|
Ensemble | Boosted trees | 7-predictor hold-out 10% (H|7/0.10) | 0.0632 | 0.8550 |
Bagged trees | 5 predictors, 5 folds (C|5/5f) | 0.0662 | 0.8383 | |
Gaussian process regression (GPR) | Exponential GPR | 7-predictor hold-out 10% (H|7/0.10) | 0.0518 | 0.8984 |
Squared exponential GPR | 7-predictor hold-out 15% (H|7/0.15) | 0.0520 | 0.8753 | |
Matern 5/2 GPR | 7-predictor hold-out 15% (H|7/0.15) | 0.0521 | 0.8750 | |
Rational quadratic GPR | 7-predictor hold-out 15% (H|7/0.15) | 0.0523 | 0.8743 | |
Kernel | SVM kernel | 7-predictor hold-out 15% (H|7/0.15) | 0.0582 | 0.8441 |
Least-squares regression kernel | 7-predictor hold-out 10% (H|7/0.10) | 0.0583 | 0.8717 | |
Linear regression | Linear | 7-predictor hold-out 25% (H|7/0.25) | 0.0719 | 0.8077 |
Robust linear | 7-predictor hold-out 25% (H|7/0.25) | 0.0732 | 0.8006 | |
Neural network | Narrow neural network | 5 predictors, 3 folds (C|3/5f) | 0.0695 | 0.8222 |
Medium neural network | 7-predictors hold-out 25% (H|7/0.25) | 0.0834 | 0.7262 | |
Wide neural network | 7-predictor hold-out 10% (H|7/0.10) | 0.0693 | 0.8185 | |
Bilayered neural network | 7-predictor hold-out 15% trained 5% (H|7/0.15T0.05) | 0.0725 | 0.6706 | |
Trilayered neural network | 7-predictor hold-out 15% trained 5% (H|7/0.15T0.05) | 0.0850 | 0.5482 | |
Stepwise linear regression | Stepwise linear | 7-predictor hold-out 15% (H|7/0.15) | 0.0839 | 0.8545 |
Support vector machines (SVMs) | Linear SVM | 7 predictors, 5 folds (C|7/5f) | 0.0592 | 0.8385 |
Quadratic SVM | 5 predictors, 3 folds (C|3/5f) | 0.0621 | 0.8407 | |
Cubic SVM | 7-predictor hold-out 15% (H|7/0.15) | 0.0945 | 0.6714 | |
Fine Gaussian SVM | 7-predictor hold-out 15% (H|7/0.15) | 0.0607 | 0.8306 | |
Medium Gaussian SVM | 7-predictor hold-out 15% (H|7/0.15) | 0.0503 | 0.8834 | |
Coarse Gaussian SVM | 5 predictors, 5 folds (C|5/5f) | 0.0555 | 0.8579 | |
Tree | Fine tree | 5 predictors, 3 folds (C|3/5f) | 0.0773 | 0.7799 |
Medium tree | 7-predictor hold-out 10% (H|7/0.10) | 0.0735 | 0.8011 | |
Coarse tree | 7-predictor hold-out 10% (H|7/0.10) | 0.0715 | 0.8145 |
Power (Log–Log) Regression | Machine Learning Optimized Gaussian Process Regression | ||||
---|---|---|---|---|---|
Tractor Cohort * | RMSE | RSqAdj | RMSE | RSqAdj | Observations |
A|Bb | 0.0049 | 0.9726 | 0.0533 | 0.7978 | 79 |
F|Fb | 0.0470 | 0.9198 | 0.0639 | 0.7335 | 37 |
F|Fa | 0.0192 | 0.9749 | 0.0551 | 0.8892 | 35 |
A|Ea | 0.0196 | 0.9712 | 0.0490 | 0.8868 | 22 |
E|Ea | 0.0262 | 0.9590 | 0.0676 | 0.7448 | 31 |
A|Gb | 0.0266 | 0.9835 | 0.0526 | 0.8534 | 71 |
F|Ea | 0.0316 | 0.9830 | 0.0624 | 0.8571 | 21 |
E|Ib | 0.0337 | 0.9649 | 0.0851 | 0.4006 | 38 |
F|Ib | 0.0361 | 0.9784 | 0.0697 | 0.5990 | 39 |
F|Gb | 0.0402 | 0.9745 | 0.0572 | 0.6034 | 23 |
Regression Model | RMSE | RSqAdj |
---|---|---|
Linear (lin–lin) | 0.1305 | 0.9813 |
Logarithmic (lin–log) | 0.3902 | 0.8222 |
Exponential (log–lin) | 0.3863 | 0.9157 |
Power (log–log) | 0.3899 | 0.8728 |
Double square root | 0.0650 | 0.9934 |
Polynomial 12 | 0.0531 | 0.9957 |
Polynomial 21 | 0.0770 | 0.9914 |
Polynomial 22 | 0.0159 | 0.9997 |
Researcher | RMSE | RSqAdj | Observations |
---|---|---|---|
Cross and Perry (1995) [9] | 1.1061 | 0.7441 | 984 |
Unterschultz and Mumey (1996) [11] | 5.4442 | 0.5101 | 354 |
Cross and Perry (1996) [10] | 2.4855 | 0.4661 | 808 |
Wu and Perry (2004) [12] | 5.8467 | 0.7204 | 984 |
Fenollosa and Guadalajara (2007) [13] | 6.2488 | 0.6241 | 921 |
Wilson and Tolley (2004) [14] | 2.0283 | 0.7053 | 984 |
Wilson (2010) OLS [15] | 11.7206 | 0.6469 | 984 |
Wilson (2010) Box–Cox [15] | 0.7821 | 0.7441 | 982 |
ASABE (2011 (R2020)) [16] | 2.2521 | 0.7225 | 984 |
Kay, Edwards, and Duffy (2020) [17] | 0.0933 | 0.7147 | 624 |
Witte, Back, Sponagel, and Bahrs (2022) [19] | 0.9306 | 0.4931 | 990 |
Ruiz-Garcia and Sanchez-Guerrero (2022) [20] | 4.2757 | 0.7580 | 1120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herranz-Matey, I.; Ruiz-Garcia, L. Agricultural Tractor Retail and Wholesale Residual Value Forecasting Model in Western Europe. Agriculture 2023, 13, 2002. https://doi.org/10.3390/agriculture13102002
Herranz-Matey I, Ruiz-Garcia L. Agricultural Tractor Retail and Wholesale Residual Value Forecasting Model in Western Europe. Agriculture. 2023; 13(10):2002. https://doi.org/10.3390/agriculture13102002
Chicago/Turabian StyleHerranz-Matey, Ivan, and Luis Ruiz-Garcia. 2023. "Agricultural Tractor Retail and Wholesale Residual Value Forecasting Model in Western Europe" Agriculture 13, no. 10: 2002. https://doi.org/10.3390/agriculture13102002
APA StyleHerranz-Matey, I., & Ruiz-Garcia, L. (2023). Agricultural Tractor Retail and Wholesale Residual Value Forecasting Model in Western Europe. Agriculture, 13(10), 2002. https://doi.org/10.3390/agriculture13102002