The Effect of Nanosilver-Based Preparation Added to Litter on Silver and Antagonistic Elements Content in Broiler Tissues and Organs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hidayat, C.; Purwanti, S.; Komarudin, R. Reducing air pollution from broiler farms. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 12150. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Garcia, C.; Trindade, H. Review of Measures to Control Airborne Pollutants in Broiler Housing; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Dobrzański, Z.; Zygadlik, K.; Patkowska-Sokoła, B.; Nowakowski, P.; Janczak, M.; Sobczak, A.; Bodkowski, R. The effectiveness of nanosilver and mineral sorbents in the reduction of ammonia emissions from livestock manure. Przemysl. Chem. 2010, 4, 348–351. [Google Scholar]
- Ognik, K.; Stępniowska, A.; Kozłowski, K. The effect of administration of silver nanoparticles to broiler chickens on estimated intestinal absorption of iron, calcium, and potassium. Livest. Sci. 2017, 200, 40–45. [Google Scholar] [CrossRef]
- Mahmoud, U.T. Silver Nanoparticles in Poultry Production. J. Adv. Vet. Res. 2012, 2, 303–306. [Google Scholar]
- Nabinejad, A.; Noaman, V.; Khayyam Nekouiee, M. Evaluation of silver residues accumulation in tissues of Broilers treated with nanosilver using MNSR (A Clinical Trial). Arch. Razi Inst. 2016, 71, 51–55. [Google Scholar] [CrossRef]
- Czyż, K.; Patkowska-Sokoła, B.; Dobrzański, Z.; Opaliński, S. Application of nanosilver based preparation in ammonia reduction in broiler house. Archiv. Tierz. 2013, 56, 82. [Google Scholar] [CrossRef]
- Czyż, K.; Dobrzański, Z.; Patkowska-Sokoła, B.; Chojnacka, K.; Nowakowski, P. Physicochemical examinations of nanotechnological preparations. Przem. Chem. 2012, 91, 720–724. [Google Scholar]
- Smulikowska, S.; Rutkowski, A. (Eds.) Poultry Feeding Standards. Nutritional Recommendations and Feed Value; Institute of Animal Physiology and Nutrition, Polish Academy of Science: Jabłonna, Poland, 2005; pp. 1–135. [Google Scholar]
- Korczyński, F.; Pliszka, B.; Borkowski, A. Instrumental Analytical Chemistry with Exercises; Wyd. ART: Bydgoszcz, Poland, 1995. [Google Scholar]
- Diaz-Alaron, J.P.; Nawarro-Alarcon, M.; de la Serrana, L.G.; Lopez-Martinez, M.C. Determination of selenium levels in vegetables and fruits by hybride generation atomic absorption spectrometry. J. Agric. Food Chem. 1994, 42, 2848–2851. [Google Scholar] [CrossRef]
- Sharma, D.C.; Dadheech, G.; Fiza, B.; Mathur, M.; Riyat, M.; Sharma, P. Effect of oral ingestion of different forms of silver on tissue content of some essential elements in chicks. Indian J. Clin. Biochem. 2009, 24, 202–204. [Google Scholar] [CrossRef]
- Sergeevna, A.S.; Anatolevich, S.O.; Nurchallaeva, S.G.; Aleksandrovich, B.A.; Petrovich, R.E.; Vladimirovich, S.S.; Alexeevna, G.M.; Diadorovitch, I.I. Silver in the meat and organs of broiler chickens in case of using colloidal silver as an alternative to antibiotics. Biometals 2018, 31, 975–980. [Google Scholar] [CrossRef]
- Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Azizi, S. The Measurement of Cadmium, Zinc and Silver in Chicken Meat in Isfahan Province, Iran. Iranian J. Toxicol. 2021, 15, 121–126. [Google Scholar] [CrossRef]
- das Neves, M.d.S.; Scandorieiro, S.; Pereira, G.N.; Ribeiro, J.M.; Seabra, A.B.; Dias, A.P.; Yamashita, F.; Martinez, C.B.d.R.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial Activity of Biodegradable Films Incorporated with Biologically-Synthesized Silver Nanoparticles and the Evaluation of Their Migration to Chicken Meat. Antibiotics 2023, 12, 178. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Ji, J.H.; Park, J.D.; Yoon, J.U.; Kim, D.S.; Jeon, K.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol. Sci. 2009, 108, 452–461. [Google Scholar] [CrossRef]
- Kalisińska, E.; Salicki, W.; Mysłek, P.; Kavetska, K.M.; Jackowski, A. Using the mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Sci. Total Environ. 2004, 320, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, K.; Zalewski, K. Copper, zinc, lead and cadmium content in liver and muscles of mallards (Anas Platyrhychnos) and other hunting fowl species in Warmia and Mazury in 1999–2000. Polish J. Environ. St. 2003, 12, 381–386. [Google Scholar]
- Mondal, M.K.; Das, T.K.; Biswas, P.; Samanta, C.C.; Bairagi, B. Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim. Feed Sci. Technol. 2007, 139, 212–233. [Google Scholar] [CrossRef]
- Benito, V.; Devesa, V.; Muňoz, O.; Suňer, M.A.; Montoro, R.; Baos, R.; Hiraldo, F.; Ferrer, M.; Fernández, M.; González, M.J. Trace elements in blood collected from birds feeding in the area around Doňana National Park affected by the toxic spill from the Aznalcólar mine. Sci. Total Environ. 1999, 242, 309–323. [Google Scholar] [CrossRef]
- Pavlik, A.; Lichovniková, M.; Jelinek, P. Blood plasma mineral profile and qualitative indicators of the eggshell in laying hens in different housing systems. Acta Vet. 2009, 78, 419–429. [Google Scholar] [CrossRef]
- Dmoch, M.; Polonis, A. Influence of biopleks-Cu on hematological and biochemical indices and content of mineral components in blood of chicken broilers. Acta Sci. Pol. Zoot. 2007, 6, 11–18. [Google Scholar]
- Kołacz, R.; Dobrzański, Z.; Górecka, H.; Moryl, A.; Grudnik, T. Content of heavy metals in the tissues of hens kept in copper industry area. Acta Agrophys. 2003, 1, 263–269. [Google Scholar]
- Payne, R.L.; Southern, L.L. Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poult. Sci. 2005, 84, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Pappas, A.C.; Georgiou, C.A.; Komaitis, E.; Feggeros, K. Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comp. Biochem. Physiol. Part B 2010, 155, 294–300. [Google Scholar] [CrossRef]
- Wang, Y.B.; Xu, B.H. Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim. Feed Sci. Technol. 2008, 144, 306–314. [Google Scholar] [CrossRef]
- Mihaljev, Ž.A.; Orlić, D.B.; Štajner, D.I.; Živkov-Baloš, M.M.; Pavkov, S.T. The influence of different levels of dietary selenium on its distribution in the organs of broiler chickens. Proc. Nat. Sci. Matica Srpska 2007, 112, 95–105. [Google Scholar] [CrossRef]
- Leeson, S.; Namkung, H.; Durosoy, S. Effect of dietary organic selenium on egg and tissue selenium and glutathione peroxidase in broiler breeders. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2006. [Google Scholar]
- Mohanna, C.; Nys, Y. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol. 1999, 77, 241–253. [Google Scholar] [CrossRef]
- Kaya, S.; Ortatatli, M.; Haliloglu, S. Feeding diets supplemented with zinc and vitamin A in laying hens: Effects on histopathological findings and tissue mineral content. Res. Vet. Sci. 2002, 73, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Henry, P.R.; Davis, S.R.; Cousins, R.J.; Miles, R.D.; Littell, R.C.; Ammerman, C.B. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Anim. Feed Sci. Technol. 2002, 101, 161–170. [Google Scholar] [CrossRef]
- Herzig, I.; Navrátilová, M.; Totušek, J.; Suchy, P.; Večerek, V.; Blahová, J.; Zraly, Z. The effect of humic acid on zinc accumulation in chicken broiler tissues. Czech J. Anim. Sci. 2009, 54, 121–127. [Google Scholar] [CrossRef]
- Bartlett, J.R.; Smith, M.O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poultry Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef]
- Stef, D.S.; Gergen, I. Effect of mineral-enriched diet and medicinal herbs on Fe, Mn, Zn, and Cu uptake in chicken. Chem. Cent. J. 2012, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Ekmekci, G.; Somer, G.; Sendil, O. Simultaneous determination of copper, zinc and selenium in chicken liver by differential pulse polarography. Turk. J. Chem. 2003, 27, 347–356. [Google Scholar]
Parameter | Group | ||
---|---|---|---|
Control (C) | I | II | |
Initial number of chickens | 84 | 84 | 84 |
Final number of chickens | 80 | 81 | 80 |
Mortality (%) | 4.8 | 3.6 | 4.8 |
Initial body weight (g) | 400.0 | 399.0 | 420.0 |
Final body weight (g) | 1730.0 | 1830.0 | 1842.0 |
Weight gain (g) | 1330.0 | 1431.0 | 1422.0 |
Feed consumption (g/bird) | 2856 | 2904 | 2880 |
Feed conversion ratio (kg/kg body weight gain) | 2.15 | 2.03 | 2.02 |
EPEF | 319.2 | 362.1 | 361.7 |
Parameter | Ag | |||
---|---|---|---|---|
Control Group (C) | Group I | Group II | ||
Breast muscle | 0.178 | 0.180 | 0.183 | |
SD | 0.010 | 0.021 | 0.018 | |
Thigh muscle | 0.198 | 0.173 | 0.181 | |
SD | 0.023 | 0.009 | 0.045 | |
Lung | 0.198 a | 0.201 a | 0.225 b | |
SD | 0.007 | 0.013 | 0.034 | |
Abdomen skin | 0.201 a | 0.213 | 0.234 b | |
SD | 0.035 | 0.025 | 0.010 | |
Liver | 0.034 A,a | 0.112 a | 0.209 B,b | |
SD | 0.011 | 0.137 | 0.085 | |
Blood serum | 0.021 | 0.023 | 0.025 | |
SD | 0.007 | 0.011 | 0.011 |
Parameter | Cu | |||
---|---|---|---|---|
Control Group (C) | Group I | Group II | ||
Breast muscle | 0.875 | 0.934 a | 0.780 b | |
SD | 0.088 | 0.064 | 0.163 | |
Thigh muscle | 1.236 | 1.103 | 1.060 | |
SD | 0.286 | 0.059 | 0.243 | |
Lung | 1.308 a | 1.135 b | 1.298 a | |
SD | 0.084 | 0.173 | 0.078 | |
Abdomen skin | 0.452 A,a | 1.321 B,b | 1.338 B,b | |
SD | 0.055 | 0.103 | 0.103 | |
Liver | 2.640 A,a | 1.980 B,b | 2.348 A,a | |
SD | 0.263 | 0.452 | 0.422 | |
Blood serum | 0.347 A,a | 0.303 A,a | 0.252 B,b | |
SD | 0.080 | 0.050 | 0.052 |
Parameter | Se | |||
---|---|---|---|---|
Control Group (C) | Group I | Group II | ||
Breast muscle | 34.77 A,a | 73.97 B,b | 68.31 B,b | |
SD | 21.93 | 3.29 | 9.28 | |
Thigh muscle | 84.54 A,a | 88.98 A,a | 54.30 B,b | |
SD | 9.94 | 6.77 | 13.79 | |
Lung | 238.22 | 188.84 | 222.67 | |
SD | 63.84 | 28.71 | 56.15 | |
Abdomen skin | 120.85 A,a | 159.68 B,b | 147.08 | |
SD | 33.76 | 21.43 | 20.31 | |
Liver | 392.36 A,a | 266.27 B,b | 249.84 B,b | |
SD | 57.38 | 71.58 | 54.86 | |
Blood serum | 178.01 | 194.33 | 193.57 | |
SD | 44.05 | 49.10 | 53.43 |
Parameter | Zn | |||
---|---|---|---|---|
Control Group (C) | Group I | Group II | ||
Breast muscle | 4.52 a | 4.32 a | 5.27 b | |
SD | 0.62 | 0.44 | 0.97 | |
Thigh muscle | 7.89 | 7.46 | 9.37 | |
SD | 2.94 | 0.89 | 2.07 | |
Lung | 7.94 | 8.02 | 8.57 | |
SD | 0.82 | 2.81 | 0.86 | |
Abdomen skin | 7.20 | 7.60 | 7.72 | |
SD | 1.17 | 1.09 | 1.00 | |
Liver | 23.48 | 22.68 a | 28.42 b | |
SD | 4.91 | 7.60 | 4.90 | |
Blood serum | 1.17 | 1.40 | 1.49 | |
SD | 0.33 | 0.40 | 0.20 |
Breast Muscles | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | 0.3833 | 0.2574 | 0.0482 |
Cu | 1.0000 | 0.1403 | −0.3668 | |
Se | 1.0000 | 0.0332 | ||
Zn | 1.0000 | |||
Thigh Muscles | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | 0.3782 | 0.0291 | −0.0636 |
Cu | 1.0000 | 0.3797 | 0.2991 | |
Se | 1.0000 | −0.0546 | ||
Zn | 1.0000 | |||
Lung | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | 0.3709 | 0.0953 | 0.1217 |
Cu | 1.0000 | 0.3441 | 0.5754 * | |
Se | 1.0000 | 0.1852 | ||
Zn | 1.0000 | |||
Abdomen Skin | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | 0.4401 * | 0.4248 * | 0.0548 |
Cu | 1.0000 | 0.5736 * | 0.3280 | |
Se | 1.0000 | 0.4719 * | ||
Zn | 1.0000 | |||
Liver | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | −0.2942 | −0.6227 * | 0.2102 |
Cu | 1.0000 | 0.6836 * | 0.1969 | |
Se | 1.0000 | 0.0047 | ||
Zn | 1.0000 | |||
Blood Serum | ||||
Ag | Cu | Se | Zn | |
Ag | 1.0000 | 0.0219 | 0.0306 | 0.1738 |
Cu | 1.0000 | 0.0087 | −0.5342 * | |
Se | 1.0000 | 0.3509 | ||
Zn | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyż, K.; Dobrzański, Z.; Wyrostek, A.; Senze, M.; Kowalska-Góralska, M.; Janczak, M. The Effect of Nanosilver-Based Preparation Added to Litter on Silver and Antagonistic Elements Content in Broiler Tissues and Organs. Agriculture 2023, 13, 2015. https://doi.org/10.3390/agriculture13102015
Czyż K, Dobrzański Z, Wyrostek A, Senze M, Kowalska-Góralska M, Janczak M. The Effect of Nanosilver-Based Preparation Added to Litter on Silver and Antagonistic Elements Content in Broiler Tissues and Organs. Agriculture. 2023; 13(10):2015. https://doi.org/10.3390/agriculture13102015
Chicago/Turabian StyleCzyż, Katarzyna, Zbigniew Dobrzański, Anna Wyrostek, Magdalena Senze, Monika Kowalska-Góralska, and Marzena Janczak. 2023. "The Effect of Nanosilver-Based Preparation Added to Litter on Silver and Antagonistic Elements Content in Broiler Tissues and Organs" Agriculture 13, no. 10: 2015. https://doi.org/10.3390/agriculture13102015
APA StyleCzyż, K., Dobrzański, Z., Wyrostek, A., Senze, M., Kowalska-Góralska, M., & Janczak, M. (2023). The Effect of Nanosilver-Based Preparation Added to Litter on Silver and Antagonistic Elements Content in Broiler Tissues and Organs. Agriculture, 13(10), 2015. https://doi.org/10.3390/agriculture13102015