Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial, Experimental Design, Plant Material
2.2. Sample Preparation and Extraction Procedure
2.3. Determination of Phenolics and DPPH Reducing Capacity
2.4. Phenolic Acid (PA) Quantification
2.5. Statistical Analysis
3. Results and Discussion
3.1. DPPH Reducing Capacity
3.2. Total Phenolic Concentration (TPC)
3.3. Total Phenolic Acids (TPAs)
3.4. Individual Phenolic Acids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Escarnot, E.; Jacquemin, J.M.; Agneessens, R.; Paquot, M. Comparative study of the content and profiles of macronutrients in spelt and wheat, a review. Biotechnol. Agron. Société Environ. 2012, 16, 243–256. [Google Scholar]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Galli, V.; Francisci, R.; Mair, V.; Skrabanja, V.; Kreft, I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000, 68, 437–441. [Google Scholar] [CrossRef]
- Dean, M.; Shepherd, R.; Arvola, A.; Vassallo, M.; Winkelmann, M.; Claupein, E.; Lähteenmäki, L.; Raats, M.M.; Saba, A. Consumer perceptions of healthy cereal products and production methods. J. Cereal Sci. 2007, 46, 188–196. [Google Scholar] [CrossRef]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Andlauer, W.; Fürst, P. Antioxidative power of phytochemicals with special reference to cereals. Cereal Foods World 1998, 43, 356–360. [Google Scholar]
- Brandolini, A.; Hidalgo, A.; Moscaritolo, S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cereal Sci. 2008, 47, 599–609. [Google Scholar] [CrossRef]
- Mencin, M.; Markanovič, N.; Mikulič-Petkovšek, M.; Veberič, R.; Terpinc, P. Changes in the Bioaccessibility of Antioxidants after Simulated In Vitro Digestion of Bioprocessed Spelt-Enhanced Wheat Bread. Antioxidants 2023, 12, 487. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Şahin, Y.; Yıldırım, A.; Yücesan, B.; Zencirci, N.; Erbayram, Ş.; Gürel, E. Phytochemical content and antioxidant activity of einkorn (Triticum monococcum ssp monococcum), bread (Triticum aestivum L.), and durum (Triticum durum Desf.) wheat. Prog. Nutr. 2017, 19, 450–459. [Google Scholar] [CrossRef]
- Mateo Anson, N.; Aura, A.M.; Selinheimo, E.; Mattila, I.; Poutanen, K.; Van Den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts anti-inflammatory effects ex vivo. J. Nutr. 2011, 141, 137–143. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, C.S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 119, 249–257. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Mencin, M.; Jamnik, P.; Petkovšek, M.M.; Veberič, R.; Terpinc, P. Enzymatic treatments of raw, germinated and fermented spelt (Triticum spelta L.) seeds improve the accessibility and antioxidant activity of their phenolics. LWT 2022, 169, 114046. [Google Scholar] [CrossRef]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. New hypotheses for the health-protective mechanisms of wholegrain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental Factors Regulate Plant Secondary Metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Dinelli, G.; Carretero, A.S.; Di Silvestro, R.; Marotti, I.; Fu, S.; Benedettelli, S.; Ghiselli, L.; Gutiérrez, A.F. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2009, 1216, 7229–7240. [Google Scholar] [CrossRef]
- Ben-Hammouda, M.; Kremer, R.J.; Minor, H.C.; Sarwar, M. A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 1995, 21, 775–786. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crops Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour–Results of a retail survey in the UK and Germany–2. Antioxidant activity, and phenolic and mineral content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef]
- Murphy, K.M.; Hoagland, L.A.; Reeves, P.G.; Baik, B.K.; Jones, S.S. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew. Agric. Food Syst. 2009, 24, 285–292. [Google Scholar] [CrossRef]
- Buczek, J.; Jańczak-Pieniążek, M.; Harasim, E.; Kwiatkowski, C.A.; Kapusta, I. Effect of Cropping Systems and Environment on Phenolic Acid Profiles and Yielding of Hybrid Winter Wheat Genotypes. Agriculture 2023, 13, 834. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; Lacko-Bartošová, L.; Kobida, Ľ.; Kaur, A.; Moudrý, J. Phenolic Acids Profiles and Phenolic Concentrations of Emmer Cultivars in Response to Growing Year under Organic Management. Foods 2023, 12, 1480. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, H. Antioxidant activities of barley seeds extracts. Food Chem. 2007, 102, 732–737. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Rabalski, I. Bioactive compounds and their antioxidant capacity in selected primitive and modern wheat species. Open Agric. J. 2008, 2, 7–14. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Punia, S.; Kaur, M. Effect of duration of solid-state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT Food Sci Technol 2016, 71, 323–328. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The colours of durum wheat: A review. Crop Pasture Sci. 2014, 65, 1–15. [Google Scholar] [CrossRef]
- Paznocht, L.; Kotíková, Z.; Šulc, M.; Lachman, J.; Orsák, M.; Eliášová, M.; Martinek, P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem. 2018, 240, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lv, J.; Hao, J.; Niu, Y.; Whent, M.; Costa, J.; Yu, L.L. Genotype, environment, and their interactions on the phytochemical compositions and radical scavenging properties of soft winter wheat bran. Food Sci. Technol. 2015, 60, 277–283. [Google Scholar] [CrossRef]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar] [CrossRef]
- Ma, D.-Y.; Sun, D.-X.; Zuo, Y.; Wang, C.-Y.; Zhu, Y.-J.; Guo, T.-C. Diversity of Antioxidant Content and Its Relationship to Grain Color and Morphological Characteristics in Winter Wheat Grains. J. Integr. Agric. 2014, 13, 1258–1267. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef]
- Yilmaz, V.A.; Brandolini, A.; Hidalgo, A. Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats. J. Cereal Sci. 2015, 64, 168–175. [Google Scholar] [CrossRef]
- Niroula, A.; Khatri, S.; Khadka, D.; Timilsina, R. Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. Int. J. Food Prop. 2019, 22, 427–437. [Google Scholar] [CrossRef]
- Lachman, J.; Orsák, M.; Pivec, V.; Jíru, K. Antioxidant activity of grain of einkorn (Triticum mono-coccum L.), emmer (Triticum dicoccum Schuebl [Schrank]) and spring wheat (Triticum aestivum L.) varieties. Plant Soil Environ. 2012, 58, 15–21. [Google Scholar] [CrossRef]
- Stracke, B.A.; Eitel, J.; Watzl, B.; Mäder, P.; Rüfer, C.E. Influence of the production method on phytochemical concentrations in whole wheat (Triticum aestivum L.): A comparative study. J. Agric. Food Chem. 2009, 57, 10116–10121. [Google Scholar] [CrossRef]
- Hernández, L.; Afonso, D.; Rodríguez, E.M.; Díaz, C. Phenolic compounds in wheat grain cultivars. Plant Foods Hum. Nutr. 2011, 66, 408–415. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Coda, R.; Gobbetti, M. Use of sourdough fermentation and nonwheat flours for enhancing nutritional and healthy properties of wheat-based foods. In Fermented Foods in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 433–452. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Tekin-Cakmak, Z.H.; Gordeeva, E.I.; Karasu, S.; Pototskaya, I.; Chursin, A.S.; Pozherukova, V.E.; Ozulku, G.; Morgounov, A.I.; Sagdic, O.; et al. Antioxidant Capacity and Profiles of Phenolic Acids in Various Genotypes of Purple Wheat. Foods 2022, 11, 2515. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, Y.; He, Z.; Wang, D.; Liu, A.; Zhang, Y. Determination of phenolic acid concentrations in wheat flours produced at different extraction rates. J. Cereal Sci. 2013, 57, 67–72. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef] [PubMed]
- Anson, N.M.; van den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Bioavailability of ferulic acid is determined by its bioaccesibility. J. Cereal Sci. 2009, 49, 238–247. [Google Scholar] [CrossRef]
- Spaggiari, M.; Calani, L.; Folloni, S.; Ranieri, R.; Dall’Asta, C.; Galaverna, G. The impact of processing on the phenolic acids, free betaine and choline in Triticum spp. L. whole grains and milling by-products. Food Chem. 2020, 311, 125940. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow-coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. J. Cereal Sci. 2015, 65, 175–185. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Geisslitz, S.; Longin, C.F.H.; Scherf, K.A.; Koehler, P. Comparative study on gluten protein composition of ancient (einkorn, emmer and spelt) and modern wheat species (durum and common wheat). Foods 2019, 8, 409. [Google Scholar] [CrossRef]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 79, 469–476. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.B. Spanish Spelt wheat: From an endangered genetic resource to a trendy crop. Plants 2021, 10, 2748. [Google Scholar] [CrossRef] [PubMed]
Species, Cultivars, Breeding Line | Ferulic Acid | p-HBA 1 | p-Coumaric Acid | Syringic Acid | Sinapic Acid | Salicylic Acid | Caffeic Acid |
---|---|---|---|---|---|---|---|
T. aestivum, Laudis | 19.87 ± 4.25 e | 1.53 ± 0.29 cd | 1.05 ± 0.21 b | 3.30 ± 0.58 bcd | 2.08 ± 0.37 c | 1.06 ± 0.22 e | 0.61 ± 0.15 d |
T. spelta | |||||||
Altgold | 25.09 ± 0.86 cd | 2.07 ± 0.16 b | 1.29 ± 0.04 a | 3.82 ± 0.34 b | 2.48 ± 0.13 b | 1.29 ± 0.09 cd | 0.83 ± 0.03 c |
Ebners Rotkorn | 37.58 ± 2.58 a | 3.15 ± 0.21 a | 1.26 ± 0.20 a | 5.34 ± 0.58 a | 2.73 ± 0.50 a | 1.84 ± 0.15 b | 0.95 ± 0.10 b |
Oberkulmer Rotkorn | 23.35 ± 0.88 d | 1.80 ± 0.12 c | 0.90 ± 0.10 c | 3.21 ± 0.37 cde | 1.39 ± 0.27 f | 1.23 ± 0.06 de | 0.53 ± 0.08 ef |
Ostro | 19.85 ± 0.54 e | 1.46 ± 0.07 d | 0.89 ± 0.07 c | 3.51 ± 0.20 bc | 1.46 ± 0.19 ef | 1.16 ± 0.03 de | 0.56 ± 0.03 de |
Rubiota | 29.13 ± 1.29 b | 2.14 ± 0.18 b | 1.32 ± 0.09 a | 2.72 ± 0.59 def | 1.81 ± 0.39 d | 2.22 ± 0.13 a | 0.55 ± 0.10 def |
Franckenkorn | 27.50 ± 0.81 bc | 2.22 ± 0.15 b | 1.39 ± 0.10 a | 2.48 ± 0.49 f | 1.68 ± 0.30 de | 1.74 ± 0.06 b | 0.48 ± 0.8 f |
PN-1-36 | 24.76 ± 0.79 cd | 2.08 ± 0.06 b | 1.39 ± 0.05 a | 2.97 ± 0.08 def | 2.24 ± 0.70 c | 1.45 ± 0.06 c | 1.19 ± 0.13 a |
p cultivars (C) | *** | *** | *** | *** | *** | *** | *** |
2015 | 23.32 ± 0.78 c | 2.02 ± 0.14 b | 1.09 ± 0.06 b | 2.88 ± 0.24 b | 1.24 ± 0.12 c | 1.48 ± 0.10 b | 0.66 ± 0.08 b |
2016 | 26.83 ± 1.21 b | 1.92 ± 0.08 b | 0.99 ± 0.04 c | 2.73 ± 0.21 b | 1.73 ± 0.11 b | 1.41 ± 0.75 b | 0.58 ± 0.03 c |
2017 | 27.51 ± 1.45 a | 2.22 ± 0.11 a | 1.46 ± 0.06 a | 4.64 ± 0.24 a | 2.98 ± 0.16 a | 1.58 ± 0.07 a | 0.89 ± 0.04 a |
p year (Y) | *** | *** | *** | *** | *** | *** | *** |
p C × Y | *** | *** | *** | *** | *** | *** | *** |
Ferulic Acid | p-HBA 1 | p-Coumaric Acid | Syringic Acid | Sinapic Acid | Salicylic Acid | Caffeic Acid | |
---|---|---|---|---|---|---|---|
Free PAs | |||||||
Cultivar (C) | 45.7 | 82.9 | 67.9 | 39.5 | 95.3 | 89.3 | 368.0 |
Growing year (Y) | 59.2 | 12.5 | 229.9 | 290.8 | 605.2 | 160.9 | 234.6 |
C × Y | 8.1 | 25.8 | 33.7 | 38.4 | 80.5 | 25.2 | 104.6 |
Bound PAs | |||||||
Cultivar (C) | 27.8 | 61.8 | 65.0 | 19.9 | 110.9 | 40.2 | 78.9 |
Growing year (Y) | 69.4 | 121.7 | 114.9 | 67.2 | 711.3 | 229.7 | 311.6 |
C × Y | 17.9 | 31.4 | 62.2 | 23.3 | 134.5 | 43.1 | 62.2 |
Species, Cultivars, Breeding Line | Ferulic Acid | p-HBA 1 | p-Coumaric Acid | Syringic Acid | Sinapic Acid | Salicylic Acid | Caffeic Acid |
---|---|---|---|---|---|---|---|
T. aestivum, Laudis | 345.17 ± 63.4 e | 3.33 ± 0.40 c | 9.36 ± 2.39 c | 3.10 ± 0.72 c | 2.01 ± 0.33 b | 1.44 ± 0.20 d | 2.14 ± 0.47 cd |
T. spelta | |||||||
Altgold | 506.63 ± 22.45 b | 3.59 ± 0.37 bc | 15.90 ± 0.64 a | 3.36 ± 0.12 c | 2.54 ± 0.10 a | 1.51 ± 0.03 cd | 3.28 ± 0.16 b |
Ebners Rotkorn | 594.62 ± 57.35 a | 4.73 ± 0.67 a | 16.23 ± 2.53 a | 4.62 ± 0.58 a | 2.57 ± 0.55 a | 2.38 ± 0.13 b | 3.73 ± 0.37 a |
Oberkulmer Rotkorn | 452.44 ± 20.19 bcd | 2.76 ± 0.45 d | 10.30 ± 1.23 c | 2.93 ± 0.34 cd | 1.39 ± 0.26 c | 1.73 ± 0.20 c | 2.05 ± 0.33 cd |
Ostro | 402.29 ± 9.39 de | 2.55 ± 0.37 d | 7.44 ± 0.84 d | 3.55 ± 0.49 bc | 1.44 ± 0.14 c | 1.58 ± 0.13 cd | 2.30 ± 0.25 c |
Rubiota | 478.38 ± 22.33 bc | 3.46 ± 0.49 bc | 15.70 ± 0.53 a | 4.12 ± 0.37 ab | 1.83 ± 0.37 b | 2.89 ± 0.14 a | 2.28 ± 0.29 c |
Franckenkorn | 469.99 ± 35.68 bc | 3.81 ± 0.27 bc | 17.06 ± 1.00 a | 2.32 ± 0.37 d | 1.53 ± 0.19 c | 2.76 ± 0.30 a | 1.94 ± 0.29 d |
PN-1-36 | 430.89 ± 12.07 cd | 3.86 ± 0.14 b | 12.90 ± 0.44 b | 3.44 ± 0.10 c | 2.56 ± 0.07 a | 1.73 ± 0.05 c | 3.00 ± 0.08 b |
p cultivars (C) | *** | *** | *** | *** | *** | *** | *** |
2015 | 475.49 ± 18.82 a | 2.12 ± 0.19 c | 11.45 ± 1.01 c | 3.56 ± 0.25 a | 1.47 ± 0.14 c | 1.72 ± 0.11 c | 1.76 ± 0.15 c |
2016 | 428.41 ± 12.51 b | 3.79 ± 0.07 b | 13.21 ± 0.54 b | 2.69 ± 0.21 c | 1.65 ± 0.12 b | 2.43 ± 0.15 a | 2.89 ± 0.13 b |
2017 | 476.24 ± 27.80 a | 4.61 ± 0.25 a | 14.67 ± 1.05 a | 4.02 ± 0.20 a | 2.82 ± 0.18 a | 1.86 ± 0.09 b | 3.19 ± 0.18 a |
p year (Y) | *** | *** | *** | *** | *** | *** | *** |
p C × Y | *** | *** | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacko-Bartošová, M.; Kaur, A.; Lacko-Bartošová, L.; Kobida, Ľ.; Hudec, M.; Moudrý, J. Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years. Agriculture 2023, 13, 2024. https://doi.org/10.3390/agriculture13102024
Lacko-Bartošová M, Kaur A, Lacko-Bartošová L, Kobida Ľ, Hudec M, Moudrý J. Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years. Agriculture. 2023; 13(10):2024. https://doi.org/10.3390/agriculture13102024
Chicago/Turabian StyleLacko-Bartošová, Magdaléna, Amandeep Kaur, Lucia Lacko-Bartošová, Ľubomír Kobida, Matej Hudec, and Jan Moudrý. 2023. "Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years" Agriculture 13, no. 10: 2024. https://doi.org/10.3390/agriculture13102024
APA StyleLacko-Bartošová, M., Kaur, A., Lacko-Bartošová, L., Kobida, Ľ., Hudec, M., & Moudrý, J. (2023). Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years. Agriculture, 13(10), 2024. https://doi.org/10.3390/agriculture13102024