Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hand–Eye Calibration Model
2.2. Hand–Eye Calibration Algorithm Based on ICP
2.2.1. The ICP Matching Algorithm Is Solved at the Initial Value
2.2.2. Design of Hand–Eye Calibration Method Based on ICP
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pi, J.; Liu, J.; Zhou, K.; Qian, M. An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.A.; Rawankar, A.; Hoshino, Y. Autonomous and Safe Navigation of Mobile Robots in Vineyard with Smooth Collision Avoidance. Agriculture 2021, 11, 954. [Google Scholar] [CrossRef]
- Fan, P.; Lang, G.; Guo, P.; Liu, Z.; Yang, F.; Yan, B.; Lei, X. Multi-Feature Patch-Based Segmentation Technique in the Gray-Centered RGB Color Space for Improved Apple Target Recognition. Agriculture 2021, 11, 273. [Google Scholar] [CrossRef]
- Li, Y.R.; Lian, W.Y.; Liu, S.H.; Huang, Z.H.; Chen, C.T. Application of hybrid visual servo control in agricultural harvesting. In Proceedings of the International Conference on System Science and Engineering, Taichung, Taiwan, 26–29 May 2022; pp. 84–89. [Google Scholar]
- Ning, T.; Wang, C.; Han, Y.; Jin, Y.; Gao, Y.; Liu, J.; Hu, C.; Zhou, Y.; Li, P. Deep Vision Servo Hand-Eye Coordination Planning Study for Sorting Robots. Symmetry 2022, 14, 152, Erratum in Symmetry 2023, 15, 82. [Google Scholar] [CrossRef]
- Li, G.; Zou, S.; Din, S.; Qi, B. Modified Hand–Eye Calibration Using Dual Quaternions. Appl. Sci. 2022, 12, 12480. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Liu, S.; Wang, Z. Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes. IEEE Sens. J. 2017, 17, 1663–1672. [Google Scholar]
- Zou, Y.; Chen, X. Hand–eye calibration of arc welding robot and laser vision sensor through semidefinite programming. Ind. Robot Int. J. 2018, 45, 597–610. [Google Scholar] [CrossRef]
- Grossmann, B.; Krüger, V. Continuous hand-eye calibration using 3D points. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 311–318. [Google Scholar]
- Xiao, W.; Huang, J.; Song, H. Robot-world and hand–eye calibration based on quaternion: A new method and an extension of classic methods, with their comparisons. Mech. Mach. Theory 2023, 179, 105127. [Google Scholar]
- Park, F.C.; Martin, B.J. Robot sensor calibration: Solving AX = XB on the Euclidean group. IEEE Trans. Rob. Autom. 2002, 10, 717–721. [Google Scholar] [CrossRef]
- Fu, J.; Ding, Y.; Huang, T.; Liu, H.; Liu, X. Hand-eye calibration method based on three-dimensional visual measurement in robotic high-precision machining. Int. J. Adv. Manuf. Technol. 2022, 119, 3845–3856. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, M.; Kermani, M.R. A New Formulation for Hand–Eye Calibrations as Point-Set Matching. IEEE Trans. Instrum. Meas. 2020, 69, 6490–6498. [Google Scholar] [CrossRef]
- Xu, Y.; Rao, L.; Fan, G.; Chen, N. Improved Robust Hand-Eye Calibration Algorithm Based on Data Optimization and Filtering. In Proceedings of the 2020 International Conference on Virtual Reality and Visualization (ICVRV), Recife, Brazil, 13–14 November 2020; pp. 159–164. [Google Scholar]
- Evangelista, D.; Allegro, D.; Terreran, M.; Pretto, A.; Ghidoni, S. An Unified Iterative Hand-Eye Calibration Method for Eye-on-Base and Eye-in-Hand Setups. In Proceedings of the 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, 6–9 September 2022; pp. 1–7. [Google Scholar]
- Tsai, R.Y.; Lenz, R.K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 1989, 5, 345–358. [Google Scholar] [CrossRef]
- Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 1106–1112. [Google Scholar]
- Daniilidis, K. Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [Google Scholar] [CrossRef]
- Qi, L. Standard Dual Quaternion Optimization and Its Applications in Hand-Eye Calibration and SLAM. Commun. Appl. Math. Comput. 2022. [Google Scholar] [CrossRef]
- Van Toan, N.; Khoi, P.B. A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula. J. Mech. Sci. Technol. 2018, 32, 5401–5409. [Google Scholar] [CrossRef]
- Xu, A.; Rao, L.; Fan, G.; Chen, N. Fast and High Accuracy 3D Point Cloud Registration for Automatic Reconstruction From Laser Scanning Data. IEEE Access 2023, 11, 42497–42509. [Google Scholar] [CrossRef]
- Fei, B.; Yang, W.; Chen, W.M.; Li, Z.; Li, Y.; Ma, T.; Hu, X.; Ma, L. Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22862–22883. [Google Scholar] [CrossRef]
- Mingjun, W.; Fang, Y.; Le, L.; Chaojun, H. Local neighborhood feature point extraction and matching for point cloud alignment. Infrared Laser Eng. 2022, 51, 20210342. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Guo, C.; Liu, F.; Wang, W. Research on Improved ICP Geomagnetic Matching Simulation Algorithm. In Proceedings of the 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE), Ottawa, ON, Canada, 26–28 August 2022; pp. 443–445. [Google Scholar]
- Nakajima, S. Matching of Laser Range Sensor Data and 3D Surface Scanner Data Robust to Abnormal Values Using Evolutionary ICP Algorithm and Gaussian Function. In Proceedings of the 2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Beijing, China, 16–18 October 2013; pp. 250–254. [Google Scholar]
- Wang, X.; Li, Y.; Peng, Y.; Ying, S. A Coarse-to-Fine Generalized-ICP Algorithm with Trimmed Strategy. IEEE Access 2020, 8, 40692–40703. [Google Scholar] [CrossRef]
- Kuçak, R.A.; Erol, S.; Erol, B. An Experimental Study of a New Keypoint Matching Algorithm for Automatic Point Cloud Registration. ISPRS Int. J. Geo.-Inf. 2021, 10, 204. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhou, M.Q.; Geng, G.H. A Method for Scale-Varying Rigid Body Fragmentation Matching. J. Beijing Inst. Technol. 2019, 39, 95–100. [Google Scholar]
- Zhang, Y.D.; Yuan, B.; Li, X. Research on Three-dimensional Map Building of Indoor Environment based on Improved ICP Algorithm. J. Cent. China Norm. Univ. Nat. Sci. Ed. 2017, 51, 264–272. [Google Scholar]
- Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 666–673. [Google Scholar]
Equipment | Parameter | Name or Numeric Value |
---|---|---|
Robotic arm | Model | UR5e |
Workspace Positioning accuracy Repeatable positioning accuracy | ϕ 850 mm × 150 mm 0.2 mm 0.1 mm | |
Vision sensors | Model Measuring range Working distance resolution | Realsense D455 60 mm–600 mm 60 mm–150 mm 1280 × 800 |
Calibration plate | Diameter precision | 20 mm × 20 mm 5 μm |
PC | CPU GPU | EPC-P3086 [email protected] GPU/Nvidia 1050Ti(12GB) |
Rotation Matrix | Translation Vector | ||
---|---|---|---|
−0.258 | 0.014 | 0.965 | −0.499 |
−0.963 | −0.070 | −0.257 | −0.151 |
0.064 | −0.997 | 0.032 | 0.712 |
Hand–Eye Calibration Method | Rotation Error (rad) | Translation Error (mm) |
---|---|---|
Tsai–Lenz | 0.0174 | 2.446 |
Dual quaternion | 0.0162 | 2.719 |
Based on ICP hand–eye calibration method | 0.0153 | 2.387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Li, P.; Liu, Y.; Jia, T.; Yu, H.; Chen, G. Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm. Agriculture 2023, 13, 2026. https://doi.org/10.3390/agriculture13102026
Yan T, Li P, Liu Y, Jia T, Yu H, Chen G. Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm. Agriculture. 2023; 13(10):2026. https://doi.org/10.3390/agriculture13102026
Chicago/Turabian StyleYan, Tingwu, Peijuan Li, Yiting Liu, Tong Jia, Hanqi Yu, and Guangming Chen. 2023. "Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm" Agriculture 13, no. 10: 2026. https://doi.org/10.3390/agriculture13102026
APA StyleYan, T., Li, P., Liu, Y., Jia, T., Yu, H., & Chen, G. (2023). Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm. Agriculture, 13(10), 2026. https://doi.org/10.3390/agriculture13102026