The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. Life Cycle Assessment
2.2.1. Goal and Scope
2.2.2. Life Cycle Inventory (LCI) and Data Source
2.2.3. Life Cycle Impact Assessment (LCIA)
3. Results and Data Interpretation
3.1. Interpretation Based on the Unit of Production
3.2. Contribution Analysis from Cradle to Farm Gate for Midpoint Environmental Impact
3.3. Interpretation Based on the Land Demand
3.4. Damage Categories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- FAO. Cereal Supply and Demand Brief 2023; FAO: Rome, Italy, 2023. [Google Scholar]
- Némethová, J.; Vilinová, K. Changes in the Structure of Crop Production in Slovakia after 2004 Using an Example of Selected Crops. Land 2022, 11, 249. [Google Scholar] [CrossRef]
- National Agricultural and Food Centre Slovakia. Report on Agriculture and Food Sector in the Slovak. Republic for 2020—Green Report; National Agricultural and Food Centre Slovakia—Research Institute of Agricultural and Food Economics: Bratislava, Slovakia, 2021; ISBN 978-80-8058-651-5. [Google Scholar]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse Gas Emissions from Conventional and Organic Cropping Systems in Spain. I. Herbaceous Crops. Agron. Sustain. Dev. 2015, 35, 713–724. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global Greenhouse Gas Emissions from Animal-Based Foods Are Twice Those of Plant-Based Foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping Systems in Agriculture and Their Impact on Soil Health-A Review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- O’Neill, M.; Lanigan, G.J.; Forristal, P.D.; Osborne, B.A. Greenhouse Gas Emissions and Crop Yields from Winter Oilseed Rape Cropping Systems Are Unaffected by Management Practices. Front. Environ. Sci. 2021, 9, 716636. [Google Scholar] [CrossRef]
- Moudry, J., Jr.; Bernas, J.; Kopecký, M.; Konvalina, P.; Bucur, D.; Jelínková, Z.; Šterba, Z.; Kolař, L.; Moudrý, J. Influence of Farming System on Greengouse Gas Emissions within Cereal Cultivation. Environ. Eng. Manag. J. 2018, 17, 905–914. [Google Scholar] [CrossRef]
- Horowitz, J.; Gottlieb, J. The Role of Agriculture in Reducing Greenhouse Gas Emisions 2010. Available online: https://www.ers.usda.gov/webdocs/publications/42842/8494_eb15_1_.pdf?v=211 (accessed on 15 February 2023).
- Lernoud, J.; Willer, H.; Kilcher, L. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2013, 14th ed.; FiBL: Frick, Switzerland; IFOAM: Bonn, Germany, 2013; ISBN 978-3-03736-233-4. [Google Scholar]
- International Federation of Organic Agriculture Movements, Forschungsinstitut für Biologischen Landbau. The World of Organic Agriculture: Statistics & Emerging Trends 2021; FiBL: Frick, Switzerland; IFOAM: Bonn, Germany, 2021; ISBN 978-3-03736-393-5. [Google Scholar]
- Van Stappen, F.; Loriers, A.; Mathot, M.; Planchon, V.; Stilmant, D.; Debode, F. Organic Versus Conventional Farming: The Case of Wheat Production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef]
- Funk, C.; Kennedy, B. The New Food Fights: U.S. Public Divides Over Food Science; Pew Research Center: Washington, DC, USA, 2016. [Google Scholar]
- Malissiova, E.; Tsokana, K.; Soultani, G.; Alexandraki, M.; Katsioulis, A.; Manouras, A. Organic Food: A Study of Consumer Perception and Preferences in Greece. Appl. Food Res. 2022, 2, 100129. [Google Scholar] [CrossRef]
- Hansmann, R.; Baur, I.; Binder, C.R. Increasing Organic Food Consumption: An Integrating Model of Drivers and Barriers. J. Clean. Prod. 2020, 275, 123058. [Google Scholar] [CrossRef]
- Probst, L.; Aigelsperger, L.; Hauser, M. Consumer Attitudes towards Vegetable Attributes: Potential Buyers of Pesticide-Free Vegetables in Accra and Kumasi, Ghana. Ecol. Food Nutr. 2010, 49, 228–245. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Union. 2007 Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Off. J. Eur. Union 2007, 8, 1–23. [Google Scholar]
- Järvan, M.; Vettik, R.; Tamm, K. The Importance and Profitability of Farmyard Manure Application to an Organically Managed Crop Rotation. Zemdirb. Agric. 2017, 104, 321–328. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Energy Efficiency of Continuous Rye, Rotational Rye and Barley in Different Fertilization Systems in a Long-Term Field Experiment. Agronomy 2021, 11, 229. [Google Scholar] [CrossRef]
- Meemken, E.-M.; Qaim, M. Organic Agriculture, Food Security, and the Environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.Y.; Long, H.L. Analysis of Arable Land Loss and Its Impact on Rural Sustainability in Southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Moudry, J., Jr.; Jelínková, Z.; Moudry, J.; Bernas, J.; Kopecký, M.; Konvalina, P. Influence of Farming Systems on Production of Greenhouse Gas Emissions Withincultivation of Selected Crops. J. Food Agric. Environ. 2013, 11, 1015–1018. [Google Scholar]
- Lyu, Y.; Raugei, M.; Zhang, X.; Mellino, S.; Ulgiati, S. Environmental Cost and Impacts of Chemicals Used in Agriculture: An Integration of Emergy and Life Cycle Assessment. Renew. Sustain. Energy Rev. 2021, 151, 111604. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Mosier, A.; Duxbury, J.M.; Heinemeyer, O.; Minami, K. Assessing and Mitigating N2O Emissions from Agricultural Soils. Clim. Change 1998, 40, 7–38. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions. Agriculture 2020, 10, 541. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Olsen, S.I.; Rosenbaum, R.K. (Eds.) Life Cycle Assessment: Theory and Practice, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-56475-3. [Google Scholar]
- Caffrey, K.R.; Veal, M.W. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives. Sci. World J. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Biswas, W.K.; Barton, L.; Carter, D. Global Warming Potential of Wheat Production in Western Australia: A Life Cycle Assessment. Water Environ. J. 2008, 22, 206–216. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental Impacts of Organic and Conventional Agricultural Products—Are the Differences Captured by Life Cycle Assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef]
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Quantis and Agroscope: Zurich, Switzerland, 2019. [Google Scholar]
- Van Paassen, M.; Braconi, N.; Kuling, L.; Durlinger, B.; Gual, P. Agri-Footprint 5.0; Blonk Consultants: Gouda, The Netherlands, 2009; p. 134. [Google Scholar]
- Eggleston, H.S. (Ed.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.D.; Struijs, J.; van Zelm, R. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministry of VROM: The Hague, The Netherlands, 2009. [Google Scholar]
- Bernas, J.; Bernasová, T.; Nedbal, V.; Neugschwandtner, R.W. Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices. Agronomy 2021, 11, 2301. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Gerstberger, P.; Moudrý, J.; Konvalina, P.; Moudrý, J. Cup Plant, an Alternative to Conventional Silage from a LCA Perspective. Int. J. Life Cycle Assess. 2021, 26, 311–326. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Kuhlmann, H.; Lammel, J. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment Methodology. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Moudrý, J.; Konvalina, P.; Hörtenhuber, S.J.; Ghorbani, M.; Neugschwandtner, R.W.; Jiang, Z.; Krexner, T.; Kopecký, M. Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability 2022, 14, 15870. [Google Scholar] [CrossRef]
- Barros, V. Globální Změna Klimatu; 1. vyd.; Mladá Fronta: Prague, Czech Republic, 2006; ISBN 978-80-204-1356-7. [Google Scholar]
- He, X.; Qiao, Y.; Liang, L.; Knudsen, M.T.; Martin, F. Environmental Life Cycle Assessment of Long-Term Organic Rice Production in Subtropical China. J. Clean. Prod. 2018, 176, 880–888. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O Emission by Manure Application to Agricultural Soils May Largely Offset Carbon Benefits: A Global Meta-Analysis. Glob. Change Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Sørensen, P.; Velthof, G.; Amon, B.; Pinto, M.; Rodhe, L.; Salomon, E.; Hutchings, N.; Burczyk, P.; Reid, J. An Assessment of the Variation of Manure Nitrogen Efficiency throughout Europe and an Appraisal of Means to Increase Manure-N Efficiency. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 119, pp. 371–442. ISBN 978-0-12-407247-3. [Google Scholar]
- Brankatschk, G.; Finkbeiner, M. Crop Rotations and Crop Residues Are Relevant Parameters for Agricultural Carbon Footprints. Agron. Sustain. Dev. 2017, 37, 58. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Sharifi, M.; Hosseinpour, S.; Notarnicola, B.; Tassielli, G.; Renzulli, P.A. Application of Multi-Objective Genetic Algorithms for Optimization of Energy, Economics and Environmental Life Cycle Assessment in Oilseed Production. J. Clean. Prod. 2017, 140, 804–815. [Google Scholar] [CrossRef]
- Fujii, K.; Funakawa, S.; Kosaki, T. Soil Acidification. Jpn. Soc. Pedol. 2012, 55, 415–425. [Google Scholar] [CrossRef]
- Verones, F.; Hellweg, S.; Azevedo, L.B.; Chaudhary, A.; Cosme, N.; Fantke, P.; Goedkoop, M.; Hauschild, M.; Laurent, A.; Mutel, C.L.; et al. LC-Impact Version 0.5: A Spatially Differentiated Life Cycle Impact Assessment Approach. Advance Access Published 2019. Available online: https://lc-impact.eu/doc/LC-Impact_report_SEPT2016_20160927.pdf (accessed on 10 July 2023).
- Verdi, L.; Marta, A.D.; Falconi, F.; Orlandini, S.; Mancini, M. Comparison between Organic and Conventional Farming Systems Using Life Cycle Assessment (LCA): A Case Study with an Ancient Wheat Variety. Eur. J. Agron. 2022, 141, 126638. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, L.; Chen, H.; Chen, X.; He, H.; Zhang, X.; Xie, H.; Lu, C. Reduction of NH3 Emissions from Urea by Long-Term No-Tillage and Stover Mulching with Inhibitors: An Isotopic Field Study in Northeast China. Agronomy 2023, 13, 2235. [Google Scholar] [CrossRef]
- Pericherla, S.; Karnena, M.K.; Vara, S. A Review on Impacts of Agricultural Runoff on Freshwater Resources. Int. J. Emerg. Technol. 2020, 11, 829–833. [Google Scholar]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Feng, Y.; Shen, W.; Zhou, M.; Yang, L. Ammonia Volatilization Mitigation in Crop Farming: A Review of Fertilizer Amendment Technologies and Mechanisms. Chemosphere 2022, 303, 134944. [Google Scholar] [CrossRef] [PubMed]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.-O.; Bertrand, N. Reducing Ammonia Volatilization in a No-till Soil by Incorporating Urea and Pig Slurry in Shallow Bands. Nutr. Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Martines, A.M.; Nogueira, M.A.; Santos, C.A.; Nakatani, A.S.; Andrade, C.A.; Coscione, A.R.; Cantarella, H.; Sousa, J.P.; Cardoso, E.J.B.N. Ammonia Volatilization in Soil Treated with Tannery Sludge. Bioresour. Technol. 2010, 101, 4690–4696. [Google Scholar] [CrossRef] [PubMed]
- Asman, W.A.H.; Sutton, M.A.; Schjorring, J.K. Ammonia: Emission, Atmospheric Transport and Deposition. N. Phytol. 1998, 139, 27–48. [Google Scholar] [CrossRef]
- González-García, I.; Riaño, B.; Cuéllar-Franca, R.M.; Molinuevo-Salces, B.; García-González, M.C. Environmental Sustainability Performance of a Membrane-Based Technology for Livestock Wastewater Treatment with Nutrient Recovery. J. Environ. Chem. Eng. 2022, 10, 107246. [Google Scholar] [CrossRef]
- Lee, H.K.; Khaine, I.; Kwak, M.J.; Jang, J.H.; Lee, T.Y.; Lee, J.K.; Kim, I.R.; Kim, W.I.; Oh, K.S.; Woo, S.Y. The Relationship between SO2 Exposure and Plant Physiology: A Mini Review. Hortic. Environ. Biotechnol. 2017, 58, 523–529. [Google Scholar] [CrossRef]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Ye, M.; Pan, W.; Dai, W. Composite Iron-Carbon Constructed Wetland Combined with Photocatalytic Film to Restore Eutrophic Water Body and the Hydraulic Performance of Constructed Wetland. J. Water Process Eng. 2023, 53, 103590. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Water for Sustainable Food and Agriculture; FAO: Rome, Italy, 2017; ISBN 978-92-5-109977-3. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Beusen, A.H.W.; Van Beek, L.P.H.; Bouwman, A.F.; Mogollón, J.M.; Middelburg, J.J. Coupling Global Models for Hydrology and Nutrient Loading to Simulate Nitrogen and Phosphorus Retention in Surface Water—Description of IMAGE–GNM and Analysis of Performance. Geosci. Model Dev. 2015, 8, 4045–4067. [Google Scholar] [CrossRef]
- Holka, M. Life cycle assessment (LCA) of winter wheat in an intensive crop production system in Wielkopolska region (Poland). Appl. Ecol. Environ. Res. 2016, 14, 535–545. [Google Scholar] [CrossRef]
- Jwaideh, M.A.A.; Sutanudjaja, E.H.; Dalin, C. Global Impacts of Nitrogen and Phosphorus Fertiliser Use for Major Crops on Aquatic Biodiversity. Int. J. Life Cycle Assess. 2022, 27, 1058–1080. [Google Scholar] [CrossRef]
- Eyhorn, F. Reducing Pesticide Use and Risks—What Action Is Needed? Helvetas: Zurich, Switzerland, 2015. [Google Scholar] [CrossRef]
- Iverson, A.N.; Halberg, A. Muller: Organic Agriculture for Sustainable Livelihoods. Landscape Ecol. 2014, 29, 1821–1823. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision. 2012, 154. Available online: http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed on 8 March 2023).
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; et al. The BBCH System to Coding the Phenological Growth Stages of Plants—History and Publications. J. Cultiv. Plants 2009, 61, 41–52. [Google Scholar] [CrossRef]
Unit | ORG-F | ORG | CON-F | CON | |
---|---|---|---|---|---|
Outputs | |||||
Grain yield | kg ha−1 | 6106 | 5530 | 7230 | 5366 |
Straw yield | kg ha−1 | 7570 | 7343 | 8180 | 6740 |
Unit of area- 1 ha of the selected crop | ha | 1 | 1 | 1 | 1 |
Area needed for generating the same yield | ha | 1.18 | 1.31 | 1 | 1.35 |
Inputs from Technosphere | |||||
Tillage, ploughing | ha | 1 | 1 | 1 | 1 |
Tillage, cultivating, chiseling | ha | 1 | 1 | 2 × 1 | 2 × 1 |
Tillage, harrowing, by offset disc harrow | ha | 1 | 1 | 1 | 1 |
Tillage, harrowing, by offset leveling disc harrow | ha | 1 | 1 | 1 | 1 |
Combine harvesting | ha | 1 | 1 | 1 | 1 |
Sowing | ha | 1 | 1 | 1 | 1 |
Seeds | kg | 200 | 200 | 200 | 200 |
Nitrogen fertilizer, as N | kg ha−1 | 63 | - | 80 | - |
Inorganic potassium fertilizers, as K2O | kg ha−1 | 94 | - | 77 | - |
Inorganic phosphorus fertilizers, as P2O5 | kg ha−1 | 39 | - | 37 | - |
Fertilizing, by broadcaster | ha | 1 | - | 3 × 1 | - |
Application of plant protection product by field sprayer | ha | - | - | 1 | 1 |
Herbicide, mix for cereal crops, at plant | kg | - | - | 0.733 | 0.733 |
Herbicide emissions, at farm | kg | - | - | 0.733 | 0.733 |
Manure management at the farm | kg | 2233 | - | 2233 | - |
Manure treatment | kg | 2233 | - | 2233 | - |
Transport, tractor, and trailer, agricultural (Grain | tkm | 30.6 | 27.7 | 36.6 | 26.8 |
Transport tractor, and trailer, agricultural (Straw) | tkm | 37.9 | 36.7 | 40.9 | 33.7 |
Resources | |||||
Precipitation | m3 | 7751.5 | 7751.5 | 7751.5 | 7751.5 |
Water (medium for plant protection products) | l | - | - | 300 | 300 |
Emissions to air | |||||
Nitrogen oxides | kg ha−1 | - | - | 3.082 | - |
Dinitrogen monoxide | kg ha−1 | 3.45 | 3.46 | 4.76 | 3.47 |
Ammonia | kg ha−1 | - | - | 1.25 | |
Emissions to water | |||||
Nitrate | kg ha−1 | 84.9 | 89.3 | 109 | 92.1 |
Phosphorus | kg ha−1 | 1.06 | - | 1.06 | - |
Phosphate | kg ha−1 | 0.303 | - | 0.332 | - |
Impact Category | Damage Category | Abbreviation | Unit | ORG-F | ORG | CON-F | CON |
---|---|---|---|---|---|---|---|
Global warming | Climate change | GWP | kg CO2 eq | 2.23 × 10−1 | 1.31 × 10−1 | 2.04 × 10−1 | 1.40 × 10−1 |
Terrestrial acidification | Ecosystem quality | TA | kg SO2 eq | 4.35 × 10−3 | 2.92 × 10−4 | 2.10 × 10−3 | 3.14 × 10−4 |
Freshwater eutrophication | Ecosystem quality | FE | kg P eq | 1.18 × 10−4 | 1.72 × 10−5 | 1.29 × 10−4 | 1.89 × 10−5 |
Marine eutrophication | Ecosystem quality | ME | kg N eq | 5.46 × 10−4 | 4.90 × 10−4 | 4.90 × 10−4 | 5.00 × 10−4 |
Terrestrial ecotoxicity | Ecosystem quality | TET | kg 1,4-DCB | 2.71 × 10−1 | 1.89 × 10−1 | 9.79 × 10−1 | 2.64 × 10−1 |
Freshwater ecotoxicity | Ecosystem quality | FET | kg 1,4-DCB | 3.14 × 10−3 | 2.14 × 10−3 | 1.70 × 10−2 | 1.29 × 10−2 |
Marine ecotoxicity | Ecosystem quality | MET | kg 1,4-DCB | 3.79 × 10−3 | 2.45 × 10−3 | 1.14 × 10−2 | 3.54 × 10−3 |
Water consumption | Resources | WC | m3 | 2.55 × 10−4 | 1.40 × 10−4 | 1.79 × 10−3 | 1.82 × 10−4 |
Impact Category | Damage Category | Abbreviation | Unit | ORG-F | ORG | CON-F | CON |
---|---|---|---|---|---|---|---|
Global warming | Climate change | GWP | kg CO2 eq | 3.60 × 103 | 2.21 × 103 | 3.15 × 103 | 2.29 × 103 |
Terrestrial acidification | Ecosystem quality | TA | kg SO2 eq | 7.02 × 101 | 4.92 | 3.16 × 101 | 5.14 |
Freshwater eutrophication | Ecosystem quality | FE | kg P eq | 1.90 | 2.90 × 10−1 | 1.98 | 3.09 × 10−2 |
Marine eutrophication | Ecosystem quality | ME | kg N eq | 8.82 | 8.21E+00 | 7.65 | 8.72 |
Terrestrial ecotoxicity | Ecosystem quality | TET | kg 1,4-DCB | 4.38 × 103 | 3.19 × 103 | 1.51 × 104 | 4.31 × 103 |
Freshwater ecotoxicity | Ecosystem quality | FET | kg 1,4-DCB | 5.07 × 101 | 3.62 × 101 | 2.62 × 102 | 2.12 × 102 |
Marine ecotoxicity | Ecosystem quality | MET | kg 1,4-DCB | 6.13 × 101 | 4.14 × 101 | 1.76 × 102 | 5.79 × 101 |
Water consumption | Resources | WC | m3 | 4.12 | 2.36 | 2.76E+01 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukosha, C.E.; Moudrý, J.; Lacko-Bartošová, M.; Lacko-Bartošová, L.; Eze, F.O.; Neugschwandtner, R.W.; Amirahmadi, E.; Lehejček, J.; Bernas, J. The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach. Agriculture 2023, 13, 2068. https://doi.org/10.3390/agriculture13112068
Mukosha CE, Moudrý J, Lacko-Bartošová M, Lacko-Bartošová L, Eze FO, Neugschwandtner RW, Amirahmadi E, Lehejček J, Bernas J. The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach. Agriculture. 2023; 13(11):2068. https://doi.org/10.3390/agriculture13112068
Chicago/Turabian StyleMukosha, Chisenga Emmanuel, Jan Moudrý, Magdaléna Lacko-Bartošová, Lucia Lacko-Bartošová, Festus Onyebuchi Eze, Reinhard W. Neugschwandtner, Elnaz Amirahmadi, Jiří Lehejček, and Jaroslav Bernas. 2023. "The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach" Agriculture 13, no. 11: 2068. https://doi.org/10.3390/agriculture13112068
APA StyleMukosha, C. E., Moudrý, J., Lacko-Bartošová, M., Lacko-Bartošová, L., Eze, F. O., Neugschwandtner, R. W., Amirahmadi, E., Lehejček, J., & Bernas, J. (2023). The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach. Agriculture, 13(11), 2068. https://doi.org/10.3390/agriculture13112068