In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Culture Conditions
2.2. Regeneration of In Vitro Culture Depending on TDZ Application
2.3. Regeneration of In Vitro Culture Depending on the Pretreatment Temperature
2.4. Flow Cytometry (FCM) Analysis
2.5. Evaluation of Regeneration Pattern with Microscopic Observations
2.6. Experimental Design and Data Analysis
3. Results
3.1. Effect of Medium Supplementation with TDZ on the Regeneration of In Vitro Culture
3.2. Effect of Pretreatment Temperature on the Regeneration of In Vitro Culture
3.3. Ploidy Level in In Vitro-Derived Plantlets
3.4. Indication of the Origin of Shoots Regenerated from Ovaries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeter-Zakrzewska, A.; Pradita, F.A. Effect of colour of light on rooting cuttings and subsequent growth of chrysanthemum (Chrysanthemum × grandiflorum /Ramat./Kitam.). Agriculture 2021, 11, 671. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.; Hu, J.; Liu, F.; Fu, S.; Guo, X.; Chen, Q.; Zhang, L.; Zhu, L.; Hou, X. Effects of 6-benzylaminopurine combined with prohexadione-Ca on yield and quality of Chrysanthemum morifolium Ramat cv. Hangbaiju. Agriculture 2023, 13, 444. [Google Scholar] [CrossRef]
- Mekapogu, M.; Kwon, O.-K.; Song, H.-Y.; Jung, J.-A. Towards the improvement of ornamental attributes in chrysanthemum: Recent progress in biotechnological advances. Int. J. Mol. Sci. 2022, 23, 12284. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Tanaka, T. Overcoming difficulties in molecular biological analysis through a combination of genetic engineering, genome editing, and genome analysis in hexaploid Chrysanthemum morifolium. Plants 2023, 12, 2566. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.O. Chrysanthemum. In Flower Breeding and Genetics; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 389–437. [Google Scholar] [CrossRef]
- Klie, M.; Schie, S.; Linde, M.; Debener, T. The type of ploidy of chrysanthemum is not black or white: A comparison of a molecular approach to published cytological methods. Front. Plant Sci. 2014, 5, 479. [Google Scholar] [CrossRef] [PubMed]
- Karjee, S.; Mahapatra, S.; Singh, D.; Saha, K.; Viswakarma, P.K. Production of double haploids in ornamental crops. J. Pharmacogn. Phytochem. 2020, 9, 555–565. [Google Scholar]
- Zargar, M.; Zavarykina, T.; Voronov, S.; Pronina, I.; Bayat, M. The recent development in technologies for attaining doubled haploid plants in vivo. Agriculture 2022, 12, 1595. [Google Scholar] [CrossRef]
- Jacquier, N.M.A.; Gilles, L.M.; Pyott, D.E.; Martinant, J.P.; Rogowsky, P.M.; Widiez, T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 2020, 6, 610–619. [Google Scholar] [CrossRef]
- Portemer, V.; Renne, C.; Guillebaux, A.; Mercier, R. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants. Front. Plant Sci. 2015, 6, 147. [Google Scholar] [CrossRef]
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F. Epigenetic regulation of plant gametophyte development. Int. J. Mol. Sci. 2019, 20, 3051. [Google Scholar] [CrossRef]
- Ashokhan, S.; Othman, R.; Abd Rahim, M.H.; Karsani, S.A.; Yaacob, J.S. Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants 2020, 9, 352. [Google Scholar] [CrossRef]
- Zayachkovskaya, T.; Domblides, E.; Zayachkovsky, V.; Kan, L.; Domblides, A.; Soldatenko, A. Production of gynogenic plants of red beet (Beta vulgaris L.) in unpollinated ovule culture in vitro. Plants 2021, 10, 2703. [Google Scholar] [CrossRef]
- Zou, J.; Zou, X.; Gong, Z.; Song, G.; Ren, J.; Feng, H. Thidiazuron promoted microspore embryogenesis and plant regeneration in curly kale (Brassica oleracea L. convar. acephala var. sabellica). Horticulturae 2023, 9, 327. [Google Scholar] [CrossRef]
- Kumari, P.T.; Aswath, C. Haploid and double haploids in ornamentals—A review. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 1322–1336. [Google Scholar] [CrossRef]
- Ahmadli, U.; Kalidass, M.; Khaitova, L.C.; Fuchs, J.; Cuacos, M.; Demidov, D.; Zuo, S.; Pecinkova, J.; Mascher, M.; Ingouff, M.; et al. High temperature increases centromere-mediated genome elimination frequency and enhances haploid induction in Arabidopsis. Plant Commun. 2023, 4, 100507. [Google Scholar] [CrossRef]
- Jin, C.; Sun, L.; Trinh, H.K.; Danny, G. Heat stress promotes haploid formation during CENH3-mediated genome elimination in Arabidopsis. Plant Reprod. 2023, 36, 147–155. [Google Scholar] [CrossRef]
- Kiviharju, E.; Pehu, E. The effect of cold and heat pretreatments on anther culture response of Avena sativa and A. sterilis. Plant Cell Tissue Organ Cult. 1998, 54, 97–104. [Google Scholar] [CrossRef]
- Mayakaduwa, R.; Silva, T. Haploid induction in indica rice: Exploring new opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Wang, H.; Dong, B.; Jiang, J.; Fang, W.; Guan, Z.; Liao, Y.; Chen, S.; Chen, F. Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Front. Plant Sci. 2014, 5, 738. [Google Scholar] [CrossRef]
- Miler, N.; Muszczyk, P. Regeneration of callus and shoots from the ovules and ovaries of chrysanthemum in vitro. Acta Hortic. 2015, 1083, 103–106. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.R.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Du, L.-D.; Chen, S.-M.; Cao, J.-R.; Ding, X.-Q.; Zheng, C.-S.; Sun, C.-H. Comparative analysis of the effects of internal factors on the floral color of four chrysanthemum cultivars of different colors. Agriculture 2022, 12, 635. [Google Scholar] [CrossRef]
- Liu, C.; Song, G.; Zhao, Y.; Fang, B.; Liu, Z.; Ren, J.; Feng, H. Trichostatin A induced microspore embryogenesis and promoted plantlet regeneration in ornamental kale (Brassica oleracea var. acephala). Horticulturae 2022, 8, 790. [Google Scholar] [CrossRef]
- Starosta, E.; Szwarc, J.; Niemann, J.; Szewczyk, K.; Weigt, D. Brassica napus haploid and double haploid production and its latest applications. Curr. Issues Mol. Biol. 2023, 45, 4431–4450. [Google Scholar] [CrossRef]
- Miler, N.; Jedrzejczyk, I. Chrysanthemum plants regenerated from ovaries: A study on genetic and phenotypic variation. Turk. J. Bot. 2018, 42, 5. [Google Scholar] [CrossRef]
- Din, A.; Qadri, Z.A.; Rather, Z.A.; Mir, M.S.; Murtaza, I.; Khan, F.A.; Neelofar; Wani, M.A. In vitro sterilization of different explants of Chrysanthemum (Dendranthemum morifolium L.) cvs. “Candid” and “Flirt”. Cur. J. Appl. Sci. Technol. 2018, 31, 1–14. [Google Scholar] [CrossRef]
- Sun, C.Q.; Chen, F.D.; Teng, N.J.; Liu, Z.L.; Fang, W.M.; Hou, X.L. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 2010, 171, 181–192. [Google Scholar] [CrossRef]
- Van Geyt, J.; Speckmann, G.J.; D’Halluin, K.; Jacobs, M. In vitro induction of haploid plants from unpollinated ovules and ovaries of the sugarbeet (Beta vulgaris L.). Theoret. Appl. Genetics 1987, 73, 920–925. [Google Scholar] [CrossRef]
- Ihan, A.; Javornik, B. Studies of gynogenesis in onion (Allium cepa L.): Induction procedures and genetic analysis of regenerants. Plant Sci. 1995, 104, 215–224. [Google Scholar] [CrossRef]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Anis, M. Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L.—An important medicinal plant. Appl. Biochem. Biotechnol. 2012, 168, 957–966. [Google Scholar] [CrossRef]
- Sjahril, R.; Haring, F.; Riadi, M.; Rahim, M.D.; Khan, R.S.; Arjunayanti, A.; Trisnawaty, A.R. Performance of NAA, 2iP, BAP and TDZ on callus multiplication, shoots initiation and growth for efficient plant regeneration system in Chrysanthemum (Chrysanthemum morifolium Ramat.). IJAS 2016, 4, 52–61. [Google Scholar]
- Tymoszuk, A.; Zalewska, M. In vitro adventitious shoots regeneration from ligulate florets in the aspect of application in chrysanthemum breeding. Acta Sci. Pol. Hort. Cult. 2014, 13, 45–58. [Google Scholar]
- Gélinas, P.; Goulet, J.; Tastayre, G.M.; Picard, G.A. Effect of temperature and contact time on the activity of eight disinfectants—A classification. J. Food Prot. 1984, 47, 841–847. [Google Scholar] [CrossRef]
- Benderradji, L.; Brini, F.; Kellou, K.; Ykhlef, N.; Djekoun, A.; Masmoudi, K.; Bouzerzour, H. Callus induction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agronomy 2012, 2012, 367851. [Google Scholar] [CrossRef]
- Lee, K.; Seo, P.J. High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis. Planta 2017, 246, 797–802. [Google Scholar] [CrossRef]
- Mostafiz, S.B.; Wagiran, A.; Johan, N.S.; Zulkifli, N.S.A.; Ming, N.J. The effects of temperature on callus induction and regeneration in selected Malaysian rice cultivar Indica. Sains Malays. 2018, 47, 2647–2655. [Google Scholar] [CrossRef]
- Haque, M.; Islam, S.M.S.; Subramaniam, S. Effects of salt and heat pre-treatment factors on efficient regeneration in barley (Hordeum vulgare L.). 3 Biotech. 2017, 7, 63. [Google Scholar] [CrossRef]
- Lambolez, A.; Kawamura, A.; Takahashi, T.; Rymen, B.; Iwase, A.; Favero, D.S.; Ikeuchi, M.; Suzuki, T.; Cortijo, S.; Jaeger, K.E.; et al. Warm temperature promotes shoot regeneration in Arabidopsis thaliana. Plant Cell Physiol. 2022, 63, 618–634. [Google Scholar] [CrossRef]
- Zayachkovskaya, T.; Alyokhina, K.; Mineykina, A.; Romanova, O.; Vjurtts, T.; Tukuser, Y.; Zayachkovsky, V.; Ermolaev, A.; Kan, L.; Fomicheva, M.; et al. Optimizing different medium component concentration and temperature stress pretreatment for gynogenesis induction in unpollinated ovule culture of sugar beet (Beta vulgaris L.). Horticulturae 2023, 9, 900. [Google Scholar] [CrossRef]
- Zheng, M.; Fournier, A.; Weng, Y. Differential effects of cold and heat shock on embryogenic induction and green plant regeneration from wheat (Triticum aestivum L.) microspores. Am. J. Plant Sci. 2023, 14, 308–322. [Google Scholar] [CrossRef]
- Jiang, C.; Sun, J.; Li, R.; Yan, S.; Chen, W.; Guo, L.; Qin, G.; Wang, P.; Luo, C.; Huang, W.; et al. A reactive oxygen species burst causes haploid induction in maize. Mol. Plant. 2022, 15, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Kasha, K.J.; Shim, Y.S.; Simion, E.; Letarte, J. Haploid production and chromosome doubling. Acta Hortic. 2006, 725, 817–828. [Google Scholar] [CrossRef]
- Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 2005, 95, 439–447. [Google Scholar] [CrossRef]
- Betekhtin, A.; Rojek, M.; Jaskowiak, J.; Milewska-Hendel, A.; Kwasniewska, J.; Kostyukova, Y.; Kurczynska, E.; Rumyantseva, N.; Hasterok, R. Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn. PLoS ONE 2017, 12, e0173537. [Google Scholar] [CrossRef] [PubMed]
- Aversano, R.; Ercolano, M.R.; Caruso, I.; Fasano, C.; Rosellini, D.; Carputo, D. Molecular tools for exploring polyploid genomes in plants. Int. J. Mol. Sci. 2012, 13, 10316–10335. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-Villegas, P.; Chen, F.-C. Advances and perspectives for polyploidy breeding in orchids. Plants 2022, 11, 1421. [Google Scholar] [CrossRef]
Cultivar | Brasil | Capitola | Jewel Time Yellow | |||
---|---|---|---|---|---|---|
Explant | Ovary | Ovule | Ovary | Ovule | Ovary | Ovule |
TDZ (mg·L−1) | Disinfected explants (%) | |||||
0.5 | 58.3 b–d | 58.3 b–d | 91.7 ab | 100 a | 83.3 a–c | 66.7 b–d |
1.0 | 41.7 d | 66.7 b–d | 100 a | 100 a | 100 a–c | 91.7 ab |
1.5 | 83.3 a–c | 66.7 b–d | 100 a | 100 a | 75.0 a–c | 83.3 a–c |
Explants regenerating callus (%) | ||||||
0.5 | 94.0 a | 50.0 c | 90.0 a | 10.0 ef | 94.0 a | 5.0 f |
1.0 | 68.0 b | 24.0 de | 88.0 a | 70.0 b | 94.0 a | 15.0 ef |
1.5 | 89.0 a | 43.0 c | 80.3 ab | 36.7 cd | 94.0 a | 40.0 cd |
Explants regenerating shoots (%) | ||||||
0.5 | 3.0 ef | 0.0 f | 7.6 cd | 0.7 f | 12.0 bc | 0.0 f |
1.0 | 4.0 ef | 0.0 f | 4.7 ef | 0.7 f | 18.6 ab | 0.0 f |
1.5 | 5.0 ef | 0.0 f | 8.7 cd | 0.7 f | 22.0 a | 0.0 f |
Number of shoots per explant | ||||||
0.5 | 0.16 b–d | 0.00 e | 0.22 bc | 0.06 b–d | 0.23 b | 0.00 e |
1.0 | 0.08 b–d | 0.00 e | 0.05 de | 0.01 e | 0.42 a | 0.00 e |
1.5 | 0.14 b–d | 0.00 e | 0.21 bc | 0.05 b-d | 0.53 a | 0.00 e |
Cultivar | Brasil | Capitola | Jewel Time Yellow | |||
---|---|---|---|---|---|---|
Explant | Ovary | Ovule | Ovary | Ovule | Ovary | Ovule |
Temperature (°C) | Disinfected explants (%) | |||||
14 (control) | 75.0 bc | 83.0 b | 58.0 cd | 50.0 de | 83.0 b | 83.0 b |
4 | 42.0 de | 92.0 a | 75.0 bc | 33.0 e | 58.0 cd | 83.0 b |
32 | 92.0 a | 100 a | 75.0 bc | 67.0 cd | 78.0 bc | 80.0 b |
Explants regenerating callus (%) | ||||||
14 (control) | 82.0 a | 29.0 c–e | 98.8 a | 32.0 b–e | 91.0 a | 26.0 de |
4 | 87.0 a | 36.0 b–e | 96.0 a | 42.0 b–d | 32.6 b–e | 32.6 b–e |
32 | 95.0 a | 50.0 b | 16.6 e | 39.0 b–d | 96.0 a | 48.0 bc |
Explants regenerating shoots (%) | ||||||
14 (control) | 12.0 cd | 0.0 e | 16.0 bc | 0.0 e | 33.0 a | 0.0 e |
4 | 20.0 bc | 0.0 e | 24.0 ab | 2.0 de | 5.0 de | 0.0 e |
32 | 0.0 e | 0.0 e | 19.0 bc | 0.0 e | 17.0 bc | 0.0 e |
Number of shoots per explant | ||||||
14 (control) | 0.45 ab | 0.00 d | 0.44 ab | 0.00 d | 0.47 ab | 0.00 d |
4 | 0.68 a | 0.00 d | 0.45 ab | 0.02 cd | 0.12 cd | 0.00 d |
32 | 0.00 d | 0.00 d | 0.55 a | 0.00 d | 0.27 bc | 0.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miler, N.; Tymoszuk, A.; Rewers, M.; Kulus, D. In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects. Agriculture 2023, 13, 2069. https://doi.org/10.3390/agriculture13112069
Miler N, Tymoszuk A, Rewers M, Kulus D. In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects. Agriculture. 2023; 13(11):2069. https://doi.org/10.3390/agriculture13112069
Chicago/Turabian StyleMiler, Natalia, Alicja Tymoszuk, Monika Rewers, and Dariusz Kulus. 2023. "In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects" Agriculture 13, no. 11: 2069. https://doi.org/10.3390/agriculture13112069
APA StyleMiler, N., Tymoszuk, A., Rewers, M., & Kulus, D. (2023). In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects. Agriculture, 13(11), 2069. https://doi.org/10.3390/agriculture13112069