Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea (Cicer arietinum L.) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Nutrient Medium Composition
2.3. Experimental Setup and Aluminum Treatment
2.4. Measured Phenotypic Traits
2.5. Statistical Analysis
3. Results
3.1. Variation in Response of Chickpea Genotypes to Aluminum Stress
3.2. Variation in the Performance of Chickpea Genotypes
3.3. Grouping of Chickpea Genotypes Based on Their Relative Root Growth Values
3.4. Correlation between Root and Shoot Traits
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. FAO (Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/faostat/en/ (accessed on 20 October 2022).
- Muehlbauer, F.J.; Sarker, A. Economic importance of chickpea: Production, value, and world trade. In The Chickpea Genome; Varshney, R.K., Thudi, M.M.F., Eds.; Springer: Cham, Switzerland, 2017; pp. 5–12. ISBN 9783319661179. [Google Scholar]
- CSA (Central Statistical Agency). The Federal Democratic Republic of Ethiopia Central Statistical Agency Report on Area, Production and Farm Management Practice of Belg Season Crops for Private Peasant Holdings; Ethiopia Statistics Service: Addis Ababa, Ethiopia, 2021; pp. 1–142. [Google Scholar]
- Kassie, M.; Shiferaw, B.; Asfaw, S.; Abate, T.; Muricho, G.; Ferede, S.; Eshete, M.; Assefa, K. Current Situation and Future Outlooks of the Chickpea Sub-sector in Ethiopia. ICRISAT EIAR 2009, 1–39. [Google Scholar]
- Verkaart, S.; Munyua, B.G.; Mausch, K.; Michler, J.D. Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia? Food Policy 2017, 66, 50–61. [Google Scholar] [CrossRef]
- Damte, T.; Ojiewo, C.O. Current status of wilt/root rot diseases in major chickpea growing areas of Ethiopia. Arch. Phytopathol. Plant Prot. 2016, 49, 222–238. [Google Scholar] [CrossRef]
- Fikre, A.; Desmae, H.; Ahmed, S. Tapping the economic potential of chickpea in sub-saharan africa. Agronomy 2020, 10, 1707. [Google Scholar] [CrossRef]
- Toker, C.; Lluch, C.; Tejera, N.A.; Serraj, R.; Siddique, K.H.M. Abiotic Stresses. In Chickpea Breeding and Management; Yadav, S.S., Redden, R.J., Chen, W.S.B., Eds.; Centre for Agriculture and Bioscience International (CABI): Wallingford, UK, 2007; pp. 474–496. ISBN 9781845932138. [Google Scholar]
- Kochian, L.V.; Hoekenga, O.A.; Piñeros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Kassahun, B. Soil Fertility Mapping and Fertilizer Blending; Agricultural Transformation Agency (ATA): Addis Ababa, Ethiopia, 2015.
- Mosissa, F. Progress of Soil Acidity Management Research in Ethiopia. Adv. Crop Sci. Technol. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Foy, C.D.; Chaney, R.L.; White, M.C. The Physiology of Metal Toxicity in Plants. Annu. Rev. Plant Physiol. 1978, 29, 511–566. [Google Scholar] [CrossRef]
- Ryan, P.R.; Tyerman, S.D.; Sasaki, T.; Furuichi, T.; Yamamoto, Y.; Zhang, W.H.; Delhaize, E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 2011, 62, 9–20. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R.; Randall, P.J. Aluminum Tolerance in Wheat (Triticum aestivum L.) II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices. Plant Physiol. 1993, 103, 695–702. [Google Scholar] [CrossRef]
- Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 237–260. [Google Scholar] [CrossRef]
- Hede, A.R.; Skovmand, B.; López-Cesati, J. Acid Soils and Aluminum Toxicity. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A.E., Eds.; CIMMYT: Mexico City, Mexico, 2001; ISBN 970-648-077-3. [Google Scholar]
- Fageria, N.K.; Wright, R.J.; Baligar, V.C. Rice cultivar response to aluminum in nutrient solution. Commun. Soil Sci. Plant Anal. 1988, 19, 1133–1142. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Singh, D. Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity. Physiol. Mol. Biol. Plants 2011, 17, 145–152. [Google Scholar] [CrossRef]
- Wayima, E.F.; Ligaba-Osena, A.; Dagne, K.; Tesfaye, K.; Machuka, E.M.; Mutiga, S.K.; Delhaize, E. Screening of diverse Ethiopian durum wheat accessions for aluminum tolerance. Agronomy 2019, 9, 440. [Google Scholar] [CrossRef]
- Giaveno, C.D.; Miranda Filho, J.B. Rapid screening for aluminum tolerance in maize (Zea mays L.). Genet. Mol. Biol. 2000, 23, 847–850. [Google Scholar] [CrossRef]
- Dai, S.F.; Yan, Z.H.; Liu, D.C.; Zhang, L.Q.; Wei, Y.M.; Zheng, Y.L. Evaluation on Chinese Bread Wheat Landraces for Low pH and Aluminum Tolerance Using Hydroponic Screening. Agric. Sci. China 2009, 8, 285–292. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Genc, Y.; Hayes, J. The Use of Hydroponics in Abiotic Stress Tolerance Research. In Hydroponics—A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–66. [Google Scholar]
- Hede, A.R.; Skovmand, B.; Ribaut, J.M.; González-De-León, D.; Stølen, O. Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed. 2002, 121, 241–248. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R. Aluminum toxicity and tolerance in plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef]
- Moroni, J.S.; Sato, K.; Scott, B.J.; Conyers, M.; Read, B.J.; Fisher, R.; Poile, G. Novel barley (Hordeum vulgare L.) germplasm resistant to acidic soil. Crop Pasture Sci. 2010, 61, 540–553. [Google Scholar] [CrossRef]
- Tesfaye, M. Overexpression of Malate Dehydrogenase in Transgenic Alfalfa Enhances Organic Acid Synthesis and Confers Tolerance to Aluminum. Plant Physiol. 2001, 127, 1836–1844. [Google Scholar] [CrossRef]
- Singh, D.; Raje, R.S. Genetics of aluminium tolerance in chickpea (Cicer arietinum). Plant Breed. 2011, 130, 563–568. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Azeez, M.A.; Adubi, A.O.; Durodola, F.A. Landraces and Crop Genetic Improvement. In Rediscovery of Landraces as a Resource for the Future; IntechOpen: Rijeka, Croatia, 2018; pp. 1–20. [Google Scholar] [CrossRef]
- Akter, M.B.; Mosab-Bin, A.; Kamruzzaman, M.; Reflinur, R.; Nahar, N.; Rana, M.S.; Hoque, M.I.; Islam, M.S. Morpho-molecular diversity study of rice cultivars in Bangladesh. Czech J. Genet. Plant Breed. 2022, 58, 64–72. [Google Scholar] [CrossRef]
- Choudhury, S.; Sharma, P. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.). Plant Physiol. Biochem. 2014, 85, 63–70. [Google Scholar] [CrossRef]
- Rai, R. Effects of soil acidity factors on interaction of chickpea (Cicer arietinum L.) genotypes and Rhizobium strains: Symbiotic N-fixation, grain quality. In Plant-Soil Interactions at Low pH, Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH, Beckley, WV, USA, 24–29 June 1990; Springer: Berlin/Heidelberg, Germany, 1991; pp. 619–631. [Google Scholar]
- Vance, W.; Pradeep, K.; Strachan, S.R.; Diffey, S.; Bell, R.W. Novel Sources of Tolerance to Aluminium Toxicity in Wild Cicer (Cicer reticulatum and Cicer echinospermum) Collections. Front. Plant Sci. 2021, 12, 678211. [Google Scholar] [CrossRef]
- Negusse, H.; Cook, D.R.; Haileselassie, T.; Tesfaye, K. Identification of Aluminum Tolerance in Ethiopian Chickpea (Cicer arietinum L.) Germplasm Identification of Aluminum Tolerance in Ethiopian Chickpea. Agronomy 2022, 12, 948. [Google Scholar] [CrossRef]
- Rangel, A.F.; Rao, I.M.; Horst, W.J. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J. Exp. Bot. 2007, 58, 3895–3904. [Google Scholar] [CrossRef]
- Paliwal, K.; Sivaguru, M.; Thiruselvi, A. Identification of an aluminum tolerant tropical cowpea cultivar by growth and biomass accumu-lation parameters. J. Plant Nutr. 1994, 17, 367–376. [Google Scholar] [CrossRef]
- Sledge, M.K.; Pechter, P.; Payton, M.E. Aluminum tolerance in Medicago truncatula germplasm. Crop Sci. 2005, 45, 2001–2004. [Google Scholar] [CrossRef]
- Villagarcia, M.R.; Carter, T.E.; Rufty, T.W.; Niewoehner, A.S.; Jennette, M.W.; Arrellano, C. Genotypic rankings for aluminum tolerance of soybean roots grown in hydroponics and sand culture. Crop Sci. 2001, 41, 1499–1507. [Google Scholar] [CrossRef]
- Singh, V.K.; Chander, S.; Sheoran, R.K.; Anu; Sheoran, O.P.; Garcia-Oliveira, A.L. Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.). Czech J. Genet. Plant Breed. 2022, 58, 201–209. [Google Scholar] [CrossRef]
- Alemu, B.; Lule, D. Yield and agronomic performances of desi type chickpea genotypes against acidic soil of Western Ethiopia. J. Agric. Biotechnol. Sustain. Dev. 2018, 10, 116–121. [Google Scholar] [CrossRef]
- Narasimhamoorthy, B.; Bouton, J.H.; Olsen, K.M.; Sledge, M.K. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor. Appl. Genet. 2007, 114, 901–913. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J.; Freidank, M.; Cai, J.; Protivinsky, T. Package ‘corrplot’. Statistician 2021, 56, 316–324. [Google Scholar]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. 2017, 76. R Packages. 2020. Available online: https://rpkgsdatanovia.com/factoextra/index (accessed on 20 April 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Blair, M.W.; López-Marín, H.D.; Rao, I.M. Identification of aluminum resistant Andean common bean (Phaseolus vulgaris L.) genotypes. Brazilian J. Plant Physiol. 2009, 21, 291–300. [Google Scholar] [CrossRef]
- Singh, D.; Dikshit, H.K.; Singh, R. Variation of aluminium tolerance in lentil (Lens culinaris Medik.). Plant Breed. 2012, 131, 751–761. [Google Scholar] [CrossRef]
- Xu, L.M.; Liu, W.; Cui, B.M.; Wang, N.; Ding, J.Z.; Liu, C.; Gao, S.B.; Zhang, S.Z. Aluminum tolerance assessment of 141 maize germplasms in solution cultures. Univers. J. Agric. Res. 2017, 5, 1–9. [Google Scholar]
- Kulkarni, V.; Sawbridge, T.; Kaur, S.; Hayden, M.; Slater, A.T.; Norton, S.L. New sources of lentil germplasm for aluminium toxicity tolerance identified by high throughput hydroponic screening. Physiol. Mol. Biol. Plants 2021, 27, 563–576. [Google Scholar] [CrossRef]
- Cosic, T.; Poljak, M.; Custic, M.; Rengel, Z. Aiuminium tolerance of durum wheat germplasm. Euphytica 1994, 78, 239–243. [Google Scholar] [CrossRef]
- Belachew, K.Y. Root and Shoot Traits Associated with Acidity and Drought Tolerance in Vicia faba L. Plants; University of Helsinki: Helsinki, Finland, 2019. [Google Scholar]
Treatment | Traits | Minimum | Maximum | Mean | CV % | R2 | MSE |
---|---|---|---|---|---|---|---|
RL | 3.80 | 20.71 | 13.6 *** | 12.62 | 0.85 | 2.95 | |
SL | 6.25 | 24.32 | 13.76 *** | 8.35 | 0.92 | 1.32 | |
Control | RFW | 0.08 | 0.48 | 0.21 *** | 10.76 | 0.90 | 0.00 |
SFW | 0.15 | 0.43 | 0.24 *** | 11.67 | 0.87 | 0.00 | |
RDW | 0.04 | 0.16 | 0.06 *** | 9.13 | 0.92 | 0.00 | |
SDW | 0.06 | 0.15 | 0.09 *** | 9.78 | 0.88 | 0.00 | |
RL | 3.67 | 16.70 | 9.64 *** | 13.51 | 0.90 | 1.70 | |
SL | 5.77 | 22.73 | 12.22 *** | 13.15 | 0.86 | 2.58 | |
Al treatment | RFW | 0.09 | 0.34 | 0.16 *** | 11.99 | 0.87 | 0.00 |
SFW | 0.10 | 0.37 | 0.20 *** | 13.07 | 0.86 | 0.00 | |
RDW | 0.03 | 0.12 | 0.06 *** | 10.48 | 0.90 | 0.00 | |
SDW | 0.04 | 0.14 | 0.08 *** | 12.08 | 0.87 | 0.00 | |
RRG | 0.27 | 1.59 | 0.74 *** | 21.25 | 0.78 | 0.02 | |
RSG | 0.43 | 1.31 | 0.89 *** | 15.38 | 0.62 | 0.02 | |
Relative performance | RRFW | 0.43 | 1.36 | 0.79 *** | 15.40 | 0.73 | 0.01 |
RSFW | 0.53 | 1.41 | 0.85 ** | 17.42 | 0.57 | 0.02 | |
RRDW | 0.50 | 1.45 | 0.88 *** | 14.94 | 0.66 | 0.02 | |
RSDW | 0.46 | 1.39 | 0.91 * | 16.67 | 0.55 | 0.02 |
PCs | Eigen Value | Percentage of Explained Variance | Cumulative Percentage of Variance | |
---|---|---|---|---|
PC1 | 5.6 | 46.96 | 46.96 | |
PC2 | 1.7 | 13.91 | 60.87 | |
PC3 | 1.2 | 9.79 | 70.66 | |
PC4 | 1.0 | 8.12 | 78.78 | |
Trait contribution to the first four PCs | ||||
Traits | PC1 | PC2 | PC3 | PC4 |
RL | 0.62 | −0.25 | −0.05 | −0.57 |
SL | 0.66 | −0.45 | −0.51 | 0.09 |
RFW | 0.63 | 0.20 | 0.57 | −0.25 |
SFW | 0.76 | −0.50 | −0.18 | 0.01 |
RDW | 0.54 | −0.25 | 0.67 | 0.36 |
SDW | 0.77 | −0.50 | −0.03 | 0.24 |
RRG | 0.68 | 0.21 | 0.02 | −0.36 |
RSG | 0.74 | 0.30 | −0.22 | 0.20 |
RRFW | 0.67 | 0.40 | 0.06 | −0.29 |
RSFW | 0.76 | 0.46 | −0.08 | 0.03 |
RRDW | 0.62 | 0.40 | 0.16 | 0.23 |
RSDW | 0.74 | 0.34 | −0.16 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negusse, H.; Haileselassie, T.; Geleta, M.; Tesfaye, K. Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea (Cicer arietinum L.) Cultivars. Agriculture 2023, 13, 2127. https://doi.org/10.3390/agriculture13112127
Negusse H, Haileselassie T, Geleta M, Tesfaye K. Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea (Cicer arietinum L.) Cultivars. Agriculture. 2023; 13(11):2127. https://doi.org/10.3390/agriculture13112127
Chicago/Turabian StyleNegusse, Hawi, Teklehaimanot Haileselassie, Mulatu Geleta, and Kassahun Tesfaye. 2023. "Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea (Cicer arietinum L.) Cultivars" Agriculture 13, no. 11: 2127. https://doi.org/10.3390/agriculture13112127
APA StyleNegusse, H., Haileselassie, T., Geleta, M., & Tesfaye, K. (2023). Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea (Cicer arietinum L.) Cultivars. Agriculture, 13(11), 2127. https://doi.org/10.3390/agriculture13112127