Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Management Practices
2.3. Penetration Resistance and Yield Measurements, Soil Sampling, and Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Water Content, Bulk Density, and Penetration Resistance
3.2. Soil Structural Properties
3.3. Maize Grain Yields
4. Discussion
4.1. Impact on Soil Properties
4.2. Impact on Maize Grain Yields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, C.; Kuhn, K.; Steinhoff-Knopp, B.; Weißhuhn, P.; Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 2021, 72, 1543–1558. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; Latawiec, A.E.; Reid, B.J.; Solórzano, A.; Schuler, A.E.; Lacerda, C.; Fidalgo, E.C.C.; Scarano, F.R.; Tubenchlak, F.; Pena, I.; et al. Systematic review of soil ecosystem services in tropical regions. R. Soc. Open Sci. 2021, 8, 201584. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Bašić, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian war impacts the total environment. Sci. Total Environ. 2022, 837, 155865. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Zhao, W.; Symochko, L.; Inacio, M.; Bogunovic, I.; Barcelo, D. The Russian-Ukrainian armed conflict impact will push back the sustainable development goals. Geogr. Sustain. 2022, 3, 277–287. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Bogunovic, I.; Filipovic, L.; Filipovic, V.; Kisic, I. Agricultural Soil Degradation in Croatia. In Impact of Agriculture on Soil Degradation II: A European Perspective, The Handbook of Environmental Chemistry, 1st ed.; Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 121, pp. 1–34. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef]
- European Commission. Caring for Soil Is Caring for Life–Ensure 75% of Soils Are Healthy by 2030 for Food, People, Nature and Climate; Independent expert report; Publications Office of the European Union: Luxembourg, 2020; 82p. [Google Scholar] [CrossRef]
- Bogunović, I.; Filipović, V. Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Curr. Opin. Environ. Sci. Health 2023, 34, 100488. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kljak, K.; Dugan, I.; Grbeša, D.; Telak, L.J.; Duvnjak, M.; Kapović Solomun, M.; Kisić, I.; Pereira, P. Grassland management impact on soil degradation and herbage nutritional value in a temperate humid environment. Agriculture 2022, 12, 921. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Dugan, I.; Pereira, P.; Barcelo, D.; Telak, L.J.; Filipovic, V.; Filipovic, L.; Kisic, I.; Bogunovic, I. Agriculture management and seasonal impact on soil properties, water, sediment and chemicals transport in a hazelnut orchard (Croatia). Sci. Total Environ. 2022, 839, 156346. [Google Scholar] [CrossRef] [PubMed]
- Dugan, I.; Pereira, P.; Defterdarovic, J.; Filipovic, L.; Filipovic, V.; Bogunovic, I. Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia). Land 2023, 12, 1691. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Patra, S.; Parihar, C.M.; Mahala, D.M.; Singh, D.; Nayak, H.S.; Patra, K.; Reddy, K.S.; Pradhan, S.; Sena, D.R. Influence of long-term tillage and diversified cropping systems on hydro-physical properties in a sandy loam soil of North-Western India. Soil Tillage Res. 2023, 229, 105655. [Google Scholar] [CrossRef]
- da Silva, G.F.; Calonego, J.C.; Luperini, B.C.O.; Chamma, L.; Alves, E.R.; Rodrigues, S.A.; Putti, F.F.; da Silva, V.M.; de Almeida Silva, M. Soil—Plant relationships in soybean cultivated under conventional tillage and long-term no-Tillage. Agronomy 2022, 12, 697. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Galic, M.; Bilandzija, D.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Earth Sci. 2020, 79, 70. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy, for a Fair, Healthy and Environmentally-Friendly Food System, 1st ed.; European Union: Bruxelles, Belgium, 2020; Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 5 September 2023).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law), 1st ed.; European Union: Bruxelles, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020PC0080 (accessed on 5 September 2023).
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Chatterjee, R.; Acharya, S.K.; Biswas, A.; Mandal, A.; Biswas, T.; Das, S.; Mandal, B. Conservation agriculture in new alluvial agro-ecology: Differential perception and adoption. J. Rural. Stud. 2021, 88, 14–27. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Yi, Z. After-Effects of Hydrochar Amendment on Water Spinach Production, N Leaching, and N2O Emission from a Vegetable Soil under Varying N-Inputs. Plants 2022, 11, 3444. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, D.; He, H.; Zhang, Q.; Lu, H.; Xue, L.; Feng, Y.; Sun, H. Substituting urea with biogas slurry and hydrothermal carbonization aqueous product could decrease NH3 volatilization and increase soil DOM in wheat growth cycle. Environ. Res. 2022, 214, 113997. [Google Scholar] [CrossRef] [PubMed]
- Dwibedi, S.K.; Pandey, V.C.; Divyasree, D.; Bajpai, O. Biochar-based land development. Land Degrad. Dev. 2022, 33, 1139–1158. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Liu, S.; Pu, S.; Deng, D.; Huang, H.; Yan, C.; Ma, H.; Razavi, B.S. Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities. Environ. Int. 2020, 134, 105277. [Google Scholar] [CrossRef]
- Nyambo, P.; Chiduza, C.; Araya, T. Effect of conservation agriculture on selected soil physical properties on a haplic cambisol in Alice, Eastern Cape, South Africa. Arch. Agron. Soil Sci. 2022, 68, 195–208. [Google Scholar] [CrossRef]
- IUSS—WRB. World Reference Base for Soil. Resources 2014: International Soil. Classification System for Naming Soils and Creating Legends for Soil. Maps; Word Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Dıaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil Tillage Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar] [CrossRef]
- Kovács, G.P.; Simon, B.; Balla, I.; Bozóki, B.; Dekemati, I.; Gyuricza, C.; Percze, A.; Birkás, M. Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy 2023, 13, 894. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Vinogradov, S.; Modiba, M.M.; Gyuricza, C.; Birkás, M. Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia. Agronomy 2021, 11, 825. [Google Scholar] [CrossRef]
- European Commission. Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels (24.02. 2021); European Union: Bruxelles, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082 (accessed on 5 September 2023).
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Chabert, A.; Sarthou, J.P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 2020, 292, 106815. [Google Scholar] [CrossRef]
- Sardar, A.; Kiani, A.K.; Kuslu, Y. Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environ. Dev. Sustain. 2021, 23, 10119–10140. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Lal, R. Aligning science and policy of regenerative agriculture. Soil Sci. Soc. Am. J. 2020, 84, 1808–1820. [Google Scholar] [CrossRef]
- Morris, G.L. Classification of Management Alternatives to Combat Reservoir Sedimentation. Water 2020, 12, 861. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D. The Effects of Soil Compaction and Different Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields of Winter Oilseed Rape and Cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, X. Bio-tillage: A new perspective for sustainable agriculture. Soil Tillage Res. 2021, 206, 104844. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.R.; Schrader, S.; Höper, H.; Wilke, B.M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Bogunovic, I.; Andabaka, Z.; Stupic, D.; Pereira, P.; Galic, M.; Novak, K.; Telak, L.J. Continuous grass coverage as a management practice in humid environment vineyards increases compaction and CO2 emissions but does not modify must quality. Land Degrad. Dev. 2019, 30, 2347–2359. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Ferreira, C.S.S.; Filipovic, V.; Filipovic, L.; Bogunovic, I. Short-Term Impact of Tillage on Soil and the Hydrological Response within a Fig (Ficus carica) Orchard in Croatia. Water 2020, 12, 3295. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, H.; Ning, F.; Zhang, Y.; Dong, Z.; Wen, P.; Wang, R.; Wang, X.; Li, J. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. Agric. For. Meteorol. 2018, 263, 107–117. [Google Scholar] [CrossRef]
- Sharratt, B.; Zhang, M.; Sparrow, S. Twenty years of tillage research in subarctic Alaska: I. Impact on soil strength, aggregation, roughness, and residue cover. Soil Tillage Res. 2006, 91, 75–81. [Google Scholar] [CrossRef]
- Taylor, H.M.; Gardner, H.R. Penetration of cotton seedlingn taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 1963, 96, 153–156. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; da Silva, V.R.; da Luz, F.B. Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil Tillage Res. 2016, 155, 351–362. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hergert, G.W.; Nielsen, R.A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 2015, 79, 212–223. [Google Scholar] [CrossRef]
- Mujdeci, M.; Isildar, A.A.; Uygur, V.; Alaboz, P.; Unlu, H.; Senol, H. Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 2017, 8, 189–198. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma 2021, 404, 115317. [Google Scholar] [CrossRef]
- Hati, K.M.; Mandal, K.G.; Misra, A.K.; Ghosh, P.K.; Bandyopadhyay, K.K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour. Technol. 2006, 97, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Sweeten, J.M.; Mathers, A.C. Improving soils with livestock manure. J. Soil Water Conserv. 1985, 40, 206–210. [Google Scholar]
- Jokela, W.E.; Grabber, J.H.; Karlen, D.L.; Balser, T.C.; Palmquist, D.E. Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron. J. 2009, 101, 727–737. [Google Scholar] [CrossRef]
- Dunjana, N.; Nyamugafata, P.; Shumba, A.; Nyamangara, J.; Zingore, S. Effects of cattle manure on selected soil physical properties of smallholder farms on two soils of Murewa, Zimbabwe. Soil Use Manag. 2012, 28, 221–228. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Soil degradation mitigation in continental climate in young vineyards planted in Stagnosols. Int. Agrophys. 2021, 35, 307–317. [Google Scholar] [CrossRef]
- Bogunović, I.; Hrelja, I.; Kisić, I.; Dugan, I.; Krevh, V.; Defterdarović, J.; Filipović, V.; Filipović, L.; Pereira, P. Straw Mulch Effect on Soil and Water Loss in Different Growth Phases of Maize Sown on Stagnosols in Croatia. Land 2023, 12, 765. [Google Scholar] [CrossRef]
- Dugan, I.; Bogunovic, I.; Pereira, P. Soil management and seasonality impact on soil properties and soil erosion in steep vineyards of north-western Croatia. J. Hydrol. Hydromech. 2023, 71, 91–99. [Google Scholar] [CrossRef]
- FAOSTAT. Agricultural Production Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 September 2023).
- Alvarez, R. Comparing productivity of organic and conventional farming systems: A quantitative review. Arch. Agron. Soil Sci. 2022, 68, 1947–1958. [Google Scholar] [CrossRef]
- Goulart, R.Z.; Reichert, J.M.; Rodrigues, M.F.; Neto, M.C.; Ebling, E.D. Comparing tillage methods for growing lowland soybean and corn during wetter-than-normal cropping seasons. Paddy Water Environ. 2021, 19, 401–415. [Google Scholar] [CrossRef]
- Ansarifar, J.; Wang, L.; Archontoulis, S.V. An interaction regression model for crop yield prediction. Sci. Rep. 2021, 11, 17754. [Google Scholar] [CrossRef] [PubMed]
- DeFelice, M.S.; Carter, P.R.; Mitchell, S.B. Influence of tillage on corn and soybean yield in the United States and Canada. Crop Manag. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Understanding global and historical nutrient use efficiencies for closing maize yield gaps. Agron. J. 2014, 106, 2107–2117. [Google Scholar] [CrossRef]
Soil properties | 0–35 cm | 35–70 cm |
pH in H2O | 7.29 | 5.10 |
P2O5 (mg kg−1) | 163 | 42 |
K2O (mg kg−1) | 282 | 79 |
Organic matter (%) | 3.37 | 1.9 |
Bulk density (g cm−3) | 1.26 | 1.34 |
Water holding capacity (%) | 44.04 | 30.68 |
Clay (%) | 23.2 | 39.9 |
Silt (%) | 30.4 | 21.0 |
Sand (%) | 46.4 | 39.1 |
Texture | Loam | Clay Loam |
Property | Cattle Manure | Biochar |
---|---|---|
H2O | 79.67 | 66.24 |
Dry matter (%) | 20.33 | 33.76 |
pH | 8.85 | 8.33 |
Organic matter (%) | 81.93 | 91.64 |
N (%) | 0.85 | 0.33 |
P2O5 (%) | 0.232 | 0.15 |
P (%) | 0.101 | |
K2O (%) | 0.665 | 0.46 |
K (%) | 0.552 | |
Ca (%) | 1.37 | |
Mg (%) | 0.09 | |
Fe (mg kg−1) | 223 | |
Mn (mg kg−1) | 360 |
Depth | Tillage | Amendment | PR (MPa) | SWC (% vol) | BD (g cm−3) | |||
---|---|---|---|---|---|---|---|---|
2021 | ||||||||
0–15 cm | Conventional | Biochar | 0.71 abc | 0.77 c | 40.2 a | 40.4 ab | 1.32 ab | 1.35 a |
Control | 0.86 bc | 40.3 a | 1.37 a | |||||
Manure | 0.76 bc | 40.8 a | 1.35 ab | |||||
Conservation | Biochar | 0.92 ab | 0.89 c | 42.8 a | 42.0 a | 1.29 b | 1.31 b | |
Control | 1.07 a | 42.1 a | 1.34 ab | |||||
Manure | 0.66 c | 41.1 a | 1.30 b | |||||
F | 8.700 | 1.12 | 4.76 | |||||
p | 0.0003 | 0.331 | 0.012 | |||||
15–30 cm | Conventional | Biochar | 1.23 b | 1.15 b | 37.8 ab | 38.5 bc | 1.37 ab | 1.38 a |
Control | 1.15 b | 36.7 b | 1.40 a | |||||
Manure | 1.04 b | 41.0 ab | 1.37 ab | |||||
Conservation | Biochar | 1.58 a | 1.40 a | 30.9 c | 37.5 c | 1.28 c | 1.29 b | |
Control | 1.50 a | 39.8 ab | 1.32 c | |||||
Manure | 1.11 b | 41.6 a | 1.27 bc | |||||
F | 6.800 | 1.404 | 2.843 | 1.618 | 0.06 | 3.56 | ||
p | 0.010 | 0.028 | 0.035 | 0.021 | 0.033 | 0.031 | ||
2022 | ||||||||
0–15 cm | Conventional | Biochar | 0.76 a | 0.74 c | 36.5 a | 35.74 a | 1.30 a | |
Control | 0.72 a | 35.1 a | 1.27 ab | 1.29 c | ||||
Manure | 0.74 a | 35.6 a | 1.31 a | |||||
Conservation | Biochar | 0.92 a | 0.87 c | 36.5 a | 35.17 a | 1.20 b | ||
Control | 0.85 a | 33.8 a | 1.22 b | 1.21 d | ||||
Manure | 0.86 a | 35.2 a | 1.22 b | |||||
F | 0.769 | 0.062 | 0.351 | |||||
p | 0.383 | 0.940 | 0.041 | |||||
15–30 cm | Conventional | Biochar | 1.02 c | 1.11 b | 35.6 ab | 34.36 a | 1.41 ab | |
Control | 1.16 abc | 34.3 abc | 1.44 a | 1.42 a | ||||
Manure | 1.14 bc | 33.2 bc | 1.42 a | |||||
Conservation | Biochar | 1.53 a | 1.43 a | 38.7 a | 34.75 a | 1.37 ab | ||
Control | 1.50 ab | 29.9 c | 1.39 ab | 1.37 b | ||||
Manure | 1.25 abc | 35.7 ab | 1.34 b | |||||
F | 13.310 | 2.589 | 4.104 | 0.184 | 0.390 | 0.58 | ||
p | 0.0004 | 0.011 | 0.021 | 0.668 | 0.028 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogunovic, I.; Dugan, I.; Pereira, P.; Filipovic, V.; Filipovic, L.; Krevh, V.; Defterdarovic, J.; Matisic, M.; Kisic, I. Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia. Agriculture 2023, 13, 2128. https://doi.org/10.3390/agriculture13112128
Bogunovic I, Dugan I, Pereira P, Filipovic V, Filipovic L, Krevh V, Defterdarovic J, Matisic M, Kisic I. Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia. Agriculture. 2023; 13(11):2128. https://doi.org/10.3390/agriculture13112128
Chicago/Turabian StyleBogunovic, Igor, Ivan Dugan, Paulo Pereira, Vilim Filipovic, Lana Filipovic, Vedran Krevh, Jasmina Defterdarovic, Manuel Matisic, and Ivica Kisic. 2023. "Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia" Agriculture 13, no. 11: 2128. https://doi.org/10.3390/agriculture13112128
APA StyleBogunovic, I., Dugan, I., Pereira, P., Filipovic, V., Filipovic, L., Krevh, V., Defterdarovic, J., Matisic, M., & Kisic, I. (2023). Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia. Agriculture, 13(11), 2128. https://doi.org/10.3390/agriculture13112128