Cultivation of Reed Canary Grass (Phalaris arundinacea L.) on Light Soils in Transitional Temperate Climate to Produce Biomass and Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Compost Chemical Properties
2.3. Study Site and Soil Properties
2.4. Climatic Conditions
2.5. Harvest and Plant Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biometric Parameters
3.1.1. Above-Ground Vegetative Organs
3.1.2. Inflorescence and Number of Seeds
3.2. Seed Yield
3.3. Dry Matter Yields and Morphological Structure of Yield
3.4. Energy Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gabryszuk, M.; Barszczewski, J.; Wróbel, B. Characteristics of grasslands and their use in Poland. J. Water Land Dev. 2021, 51, 243–249. [Google Scholar] [CrossRef]
- Kitczak, T.; Malinowski, R.; Jarnuszewski, G.; Podlasiński, M. Changes within permanent grasslands used for agriculture in the West Pomeranian Voivodship. J. Water Land Dev. 2023, 59. in press. [Google Scholar]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Linke, B.; Idler, C.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 1. Biogas. Bioresour. Technol. 2009, 100, 4931–4944. [Google Scholar] [CrossRef]
- EC. Communication (2014) 0015 from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030, COM/2014/015 Final. Available online: https://www.eea.europa.eu/policy-documents/com-2014-15-final (accessed on 7 September 2023).
- Gugele, B.; Pinterits, M.; EEA; EU; EC; DG Climate Action; EEA. Annual European Union Greenhouse Gas Inventory 1990–2021 and Inventory Report. 2023, p. 752. Available online: https://www.eea.europa.eu/publications/annual-european-union-greenhouse-gas-2 (accessed on 7 September 2023).
- Wiśniewski, T.P. Investigating Divergent Energy Policy Fundamentals: Warfare Assessment of Past Dependence on Russian Energy Raw Materials in Europe. Energies 2023, 16, 2019. [Google Scholar] [CrossRef]
- Directive 2018/2001/EU of the European Parliament and of the Council of Dec 11 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=CELEX:32018L2001 (accessed on 9 September 2023).
- Share of Energy Consumption from Renewable Sources in Europe (8th EAP). Available online: https://www.eea.europa.eu/ims/share-of-energy-consumption-from (accessed on 7 September 2023).
- Statistics Poland. Energy from Renewable Sources in 2021; Statistics Poland: Warsaw, Poland, 2022; pp. 1–96. [Google Scholar]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Igliński, B.; Kujawski, W.; Iwański, P. Energy Transition in Poland—Assessment of the Renewable Energy Sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Maciaszczyk, M.; Czechowska-Kosacka, A.; Rzepka, A.; Lipecki, T.; Łazuka, E.; Wlaź, P. Consumer Awareness of Renewable Energy Sources: The Case of Poland. Energies 2022, 15, 8395. [Google Scholar] [CrossRef]
- Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. [Google Scholar] [CrossRef]
- Jensen, E.F.; Casler, M.D.; Farrar, K.; Finnan, J.M.; Lord, R.; Palmborg, C.; Valentine, J.; Donnison, I.S. Reed Canary Grass: From Production to End Use. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: London, UK, 2018; pp. 153–173. [Google Scholar] [CrossRef]
- Scordia, D.; Cosentino, S.L. Perennial Energy Grasses: Resilient Crops in a Changing European Agriculture. Agriculture 2019, 9, 169. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Duchene, O.; Celette, F.; Ryan, M.; Dehaan, L.R.; Crews, T.E.; David, C. Integrating multipurpose perennial grains crops in Western European farming systems. Agric. Ecosyst. Environ. 2019, 284, 106591. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J. Perennial Grasses for Energy. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–140. [Google Scholar]
- Zahorec, A.; Reid, M.L.; Tiemann, L.K.; Landis, D.A. Perennial grass bioenergy cropping systems: Impacts on soil fauna and implications for soil carbon accrual. GCB Bioenergy 2022, 14, 4–23. [Google Scholar] [CrossRef]
- Wrobel, C.; Coulman, B.E.; Smith, D.L. The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2009, 59, 1–18. [Google Scholar] [CrossRef]
- Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs. fuel: The use of land for lignocellulosic ‘next generation’ energy crops that minimise competition with primary food production. Glob. Change Biol. Bioenergy 2012, 4, 1–19. [Google Scholar] [CrossRef]
- Nanda, S.; Azargohar, R.; Dalai, A.K.; Kozinski, J.A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 2015, 50, 925–941. [Google Scholar] [CrossRef]
- Waliszewska, B.; Grzelak, M.; Gaweł, E.; Spek-Dźwigała, A.; Sieradzka, A.; Czekała, W. Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes. Energies 2021, 14, 1669. [Google Scholar] [CrossRef]
- Karsznicka, A.M.; Grzesik, M.; Mika, B. Cultivation of grasses for biomass-possibilities and restrictions. Zesz. Probl. Postep. Nauk. Rol. 2005, 504, 631–637. (In Polish) [Google Scholar]
- Malinowska, E.; Wiśniewska-Kadżajan, B.; Jankowski, K.; Sosnowski, J.; Wyrębek, H. Evaluation of the usefulness of biomass of different crops for energy. Zesz. Nauk. Uniw. Przyr.-Humanist. Siedlcach Ser. Adm. Zarządzanie 2014, 102, 49–61. (In Polish) [Google Scholar]
- Lord, R.A. Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass Bioenergy 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Čížková, H.; Rychterová, J.; Hamadejová, L.; Suchý, K.; Filipová, M.; Květ, J.; Anderson, N.O. Biomass production in permanent wet grasslands dominated with Phalaris arundinacea: Case study of the Třeboň basin biosphere reserve, Czech Republic. In The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape; Vymazal, V., Ed.; Springer International: Cham, Switzerland, 2015; pp. 1–16. [Google Scholar] [CrossRef]
- Piskier, T. A method of estimation of the caloric value of the biomass. Part I–Biomass energy potential. J. Mech. Energy Eng. 2017, 1, 189–194. [Google Scholar]
- Reinhardt, J.; Hilgert, P.; Von Cossel, M. Yield performance of dedicated industrial crops on low-temperature characterised marginal agricultural land in Europe—A rewiev. Biofuels Bioprod. Biorefining 2021, 16, 609–622. [Google Scholar] [CrossRef]
- Hadders, G.; Olsson, R. Harvest of grass for combustion in late summer and in spring. Biomass Bioenergy 1997, 12, 171–175. [Google Scholar] [CrossRef]
- Christian, D.G.; Yates, N.E.; Riche, A.B. The effect of harvest date on the yield and mineral content of Phalaris arundinacea L. (reed canary grass) genotypes screened for their potential as energy crops in southern England. J. Sci. Food Agric. 2006, 86, 1181–1188. [Google Scholar] [CrossRef]
- Nabel, M.; Tenperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energising marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilisation, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef]
- Pszczólkowska, A.; Romanowska-Duda, Z.; Pszczólkowski, W.; Grzesik, M.; Wysokińska, Z. Sustainable energy crop production in Poland: Perspectives. Comp. Econ. Res. Cent. East. Eur. 2012, 15, 57–75. [Google Scholar] [CrossRef]
- FAO. IUSS Working Group WRB World Reference Base for Soil Resources 2014; Update 2015; FAO: Rome, Italy, 2014. [Google Scholar]
- Tröster, M.F. Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers. Agriculture 2023, 13, 1057. [Google Scholar] [CrossRef]
- Ferdini, S.; von Cossel, M.; Wulfmeyer, V.; Warrach-Sagi, K. Climate-based identification of suitable cropping areas for giant reed and reed canary grass on marginal land in Central and Southern Europe under climate change. GCB Bioenergy 2023, 15, 424–443. [Google Scholar] [CrossRef]
- Sahraama, M.K.; Hömmö, L. Seed production characters and germination performance of reed canary grass in Finland. Agric. Food Sci. Finl. 2000, 9, 239–251. [Google Scholar] [CrossRef]
- Kieloch, R.; Gołębowska, H.; Sienkiewicz-Cholewa, U. Impact of habitat conditions on the biological traits of the reed canary grass (Phalaris arundinacea L.). Acta Agrobot. 2015, 68, 205–210. [Google Scholar] [CrossRef]
- BN-89/9103-09; Disposal of Municipal Waste Compost from Waste. Polish Committee for Standardization: Warsaw, Poland, 1989. (In Polish)
- PN-81/G-04513; Solid Fuels–Determination of Heat of Combustion and Calculation of Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 1981. (In Polish)
- Steinhoff-Wrześniewska, A.; Dąbrowski, P.; Paszkiewicz-Jasińska, A.; Wróbel, B.; Strzelczyk, M.; Helis, M.; Kalaji, M.H. Studying the Physiological Reactions of C4 Grasses in Order to Select Them for Cultivation on Marginal Lands. Sustainability 2022, 14, 4512. [Google Scholar] [CrossRef]
- Rakhmetova, S.O.; Vergun, O.M.; Kulyk, M.I.; Blume, R.Y.; Bondarchuk, O.P.; Blume, Y.B.; Rakhmetov, D.B. Efficiency of Switchgrass (Panicum virgatum L.) Cultivation in the Ukrainian Forest-Steppe Zone and Development of Its New Lines. Open Agric. J. 2020, 14, 273–289. [Google Scholar] [CrossRef]
- Dradrach, A.; Gąbka, D.; Szlachta, J.; Wolski, K. Wartość energetyczna kilku gatunków traw uprawianych na glebie lekkiej (Energy value of several grass species cultivated on light soil). Grassl. Sci. Pol. 2007, 10, 29–35. (In Polish) [Google Scholar]
- Strašil, Z. Evaluation of reed canary grass (Phalaris arundinacea L.) grown for energy use. Res. Agric. Eng. 2012, 58, 119–130. [Google Scholar] [CrossRef]
- Ustak, S.; Šinko, J.; Muňoz, J. Reed canary grass (Phalaris arundinacea L.) as a promising energy crop. J. Cent. Eur. Agric. 2019, 20, 1143–1168. [Google Scholar] [CrossRef]
- Wrobel, C.; Coulman, B.E.; Smith, D.L. Relationship between seed retention and a folded-leaf trait in reed canarygrass (Phalaris arundinacea L.). Acta Agric. Scand. Sect. B—Soil Plant Sci. 2009, 59, 279–285. [Google Scholar] [CrossRef]
- Sahraama, M.; Jauhiainen, L. Characterization of development and stem elongation of reed canary grass under northern conditions. Ind. Crops Prod. 2003, 18, 155–169. [Google Scholar] [CrossRef]
- Śpiewakowski, E.R.; Wielicka, M.; Piasecki, J. Anatomical-morphological changes in Glyceria aquatica (L.) Wahlb. and Phalaris arundinacea L. growing in the zone inundated by the Kwiecko lake. Acta Soc. Bot. Pol. 1987, 56, 147–154. [Google Scholar] [CrossRef]
- Bélanger, G.; Cambouris, A.N.; Ziadi, N.; Parent, G.; Mongrain, D.; Lajeunesse, J.; Martel, H.; Seguin, P. Biomass Production and Environmental Considerations from Reed Canarygrass Fertilized with Organic Residues in Northern Environments. Agron. J. 2018, 110, 664–674. [Google Scholar] [CrossRef]
- Landström, S.; Lomakka, L.; Andersson, S. Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop. Biomass Bioenergy 1996, 11, 333–341. [Google Scholar] [CrossRef]
- Rancane, S.; Karklins, A.; Lazdina, D.; Berzins, P.; Bardule, A.; Butlers, A.; Lazdis, A. Biomass yield and chemical composition of Phalaris aruninacea L. using different rates of fermentation residues as fertiliser. Agron. Res. 2017, 15, 521–529. [Google Scholar]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J.; Popławska, A. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Sci. Annu. 2019, 40, 21–33. [Google Scholar] [CrossRef]
- Kopecký, M.; Mráz, P.; Kolář, L.; Váchalová, R.; Bernas, J.; Konvalina, P.; Perná, K.; Murindangabo, Y.; Menšík, L. Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass. Agronomy 2021, 11, 445. [Google Scholar] [CrossRef]
- Heinsoo, K.; Hein, K.; Melts, I.; Holm, B.; Ivask, M. Reed canary grass yield and fuel quality in Estonian farmers’ fields. Biomass Bioenergy 2011, 35, 617–625. [Google Scholar] [CrossRef]
- Strašil, Z.; Váňa, V.; Káš, M. The reed canary grass (Phalaris arundinacea L.) cultivated for energy utilisation. Res. Agric. Eng. 2005, 51, 7–12. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Skuodienė, R.; Repšienė, R.; Karčauskienė, D. The Influence of Lime Material and Nitrogen Fertilization on Reed Canary Grass Productivity, Plant Quality and Environmental Impact of Using Biomass for Energy Purposes. Agronomy 2021, 11, 895. [Google Scholar] [CrossRef]
- Kacprzak, A.; Matyka, M.; Krzystek, L.; Ledakowicz, S. Evaluation of biogas collection from reed canary grass, depending on nitrogen fertilisation levels. Chem. Process Eng. 2012, 33, 697–701. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2005, 112, 335–346. [Google Scholar] [CrossRef]
- Kitczak, T.; Jarnuszewski, G.; Łazar, E.; Malinowski, R. Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density. Agronomy 2022, 12, 2715. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass production and energy balance of Miscanthus over period of 11 years: A case study in large-scale farm in Poland. GCB Bioenergy 2019, 11, 1187–1201. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilised by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef]
- Harkot, W.; Warda, M.; Sawicki, J.; Lipińska, H.; Wyłupek, T.; Czarnecki, Z.; Kulik, M. Możliwości wykorzystania runi łąkowej do celów energetycznych (The possibility of meadow sward use for energy purposes). Grassl. Sci. Pol. 2007, 10, 59–67. (In Polish) [Google Scholar]
- Grzelak, M.; Gaweł, E.; Gajewski, P.; Kaczmarek, Z.; Majchrzak, L. Floristic diversity, yielding and calorific value of plant communities with dominant native grass species. J. Res. Appl. Agric. Eng. 2019, 64, 25–28. [Google Scholar]
- Malinowska, E.; Wiśniewska-Kadżajan, B. The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters. Energies 2023, 16, 5599. [Google Scholar] [CrossRef]
- Allison, G.; Morris, C.; Lister, S.; Barraclough, T.; Yates, N.; Shield, I.; Donnison, I. Effect of nitrogen fertiliser application on cell wall composition in switchgrass and reed canary grass. Biomass Bioenergy 2012, 40, 19–26. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Załuski, D.; Olba-Zięty, E. Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition. Energies 2020, 13, 4130. [Google Scholar] [CrossRef]
Parameter | pH in H2O | pH in 1 M KCl | EC 1 | Ctot 2 | Ntot 3 | C/N 4 | Total Content of Elements | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | K | P | Mg | Na | S | Fe | Mn | Cu | Cr | Zn | Cd | |||||||
µS·cm−1 | g·kg−1 | g·kg−1 | mg·kg−1 | |||||||||||||||
Value | 7.08 | 6.78 | 624.1 | 142.0 | 9.5 | 14.9 | 35.0 | 3.5 | 2.0 | 2.9 | 0.34 | 0.74 | 8698.3 | 312.2 | 26.4 | 12.1 | 172.5 | 1.26 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Number of Shoots | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Number of Shoots | |||||
0 | 19.8 | 20.7 | 24.7 | 28.9 | 23.5 |
10 | 25.3 | 28.6 | 30.9 | 32.3 | 29.3 |
20 | 27.6 | 29.9 | 31.8 | 33.6 | 30.7 |
Average | 24.2 | 26.4 | 29.1 | 31.6 | 27.8 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 3.65 | ||||
Seeding amount—II | 3.68 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Length of Shoots (cm) | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Length of Shoots (cm) | |||||
0 | 121.2 | 126.5 | 133.1 | 137.5 | 129.6 |
10 | 129.1 | 135.9 | 136.9 | 143.9 | 136.5 |
20 | 135.8 | 140.5 | 147.5 | 153.,1 | 144.2 |
Average | 128.7 | 134.3 | 139.2 | 144.8 | 136.8 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 3.74 | ||||
Seeding amount—II | 2.34 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Thickness of Shoots (mm) | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Thickness of Shoots (mm) | |||||
0 | 3.5 | 3.7 | 3.6 | 3.9 | 3.7 |
10 | 3.7 | 3.8 | 3.9 | 4.1 | 3.9 |
20 | 3.8 | 4.1 | 4.3 | 4.2 | 4.1 |
Average | 3.7 | 3.9 | 3.9 | 4.1 | 3.9 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 0.18 | ||||
Seeding amount—II | 0.35 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Length of Inflorescence (cm) | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Length of Inflorescence (cm) | |||||
0 | 10.3 | 11.2 | 12.1 | 13.0 | 11.7 |
10 | 11.1 | 11.9 | 12.5 | 13.4 | 12.2 |
20 | 11.2 | 12.6 | 13.5 | 13.9 | 12.8 |
Average | 10.9 | 11.9 | 12.7 | 13.4 | 12.2 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 0.27 | ||||
Seeding amount—II | 0.47 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Number of Seeds in Single Inflorescence | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Number of Seeds in Single Inflorescence | |||||
0 | 171 | 236 | 285 | 323 | 254 |
10 | 194 | 250 | 318 | 338 | 275 |
20 | 237 | 272 | 328 | 355 | 298 |
Average | 201 | 253 | 310 | 339 | 276 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 4.9 | ||||
Seeding amount—II | 8.4 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Year of Study | Average Seed Yield (kg·ha−1) | |||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | |||
Seed Yield (kg·ha−1) | ||||||
0 | 0 | 242 | 367 | 300 | 090 | 250 |
40 | 258 | 400 | 333 | 113 | 276 | |
80 | 317 | 425 | 358 | 125 | 306 | |
120 | 368 | 492 | 425 | 131 | 354 | |
Average | 296 | 421 | 354 | 115 | 297 | |
10 | 0 | 300 | 417 | 350 | 111 | 295 |
40 | 333 | 458 | 392 | 127 | 328 | |
80 | 358 | 483 | 417 | 138 | 349 | |
120 | 458 | 492 | 425 | 144 | 380 | |
Average | 362 | 463 | 396 | 130 | 338 | |
20 | 0 | 383 | 483 | 417 | 190 | 368 |
40 | 483 | 500 | 433 | 134 | 388 | |
80 | 550 | 567 | 500 | 151 | 442 | |
120 | 583 | 600 | 533 | 156 | 468 | |
Average | 500 | 538 | 471 | 158 | 416 | |
Average (2012–2015) | 0 | 308 | 422 | 356 | 130 | 304 |
40 | 358 | 453 | 386 | 125 | 330 | |
80 | 408 | 492 | 425 | 138 | 366 | |
120 | 442 | 507 | 440 | 144 | 383 | |
LSD0.05 for: | ||||||
Compost fertilisation—I | 30 | 48 | 28 | 10 | 29 | |
Seeding amount—II | 38 | 61 | 42 | 12 | 37 |
Compost Fertilisation (Mg ha−1) | Nitrogen Fertilisation (kg ha−1) | Year of Study | Average Dry Matter Yield (Mg ha−1) | |||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | |||
Dry Matter Yield (Mg ha−1) | ||||||
0 | 0 | 5.3 | 7.8 | 8.3 | 6.8 | 7.0 |
40 | 6.4 | 11.3 | 9.6 | 7.8 | 8.8 | |
80 | 8.9 | 12.9 | 10.8 | 9.1 | 10.4 | |
120 | 11.7 | 16.4 | 11.9 | 11.4 | 12.8 | |
Average | 8.1 | 12.1 | 10.1 | 8.7 | 9.8 | |
10 | 0 | 7.0 | 9.8 | 9.2 | 6.8 | 8.2 |
40 | 8.1 | 12.8 | 10.6 | 9.1 | 10.2 | |
80 | 10.0 | 14.0 | 11.9 | 10.8 | 11.7 | |
120 | 12.1 | 16.5 | 13.2 | 13.1 | 13.7 | |
Average | 9.3 | 13.3 | 11.2 | 10.0 | 10,9 | |
20 | 0 | 11.0 | 10.3 | 11.0 | 10.0 | 10.6 |
40 | 13.4 | 13.8 | 12.9 | 15.3 | 13.8 | |
80 | 15.0 | 14.8 | 14.4 | 13.9 | 14.5 | |
120 | 15.9 | 17.9 | 15.5 | 15.0 | 16.1 | |
Average | 13.9 | 14.2 | 13.5 | 13.5 | 13.8 | |
Average (2012–2015) | 0 | 7.8 | 9.3 | 9.5 | 7.9 | 8.6 |
40 | 9.3 | 12.6 | 11.0 | 10.7 | 10.9 | |
80 | 11.3 | 13.9 | 12.4 | 11.2 | 12.2 | |
120 | 13.2 | 16.9 | 13.6 | 13.1 | 14.2 | |
LSD0.05 for: | ||||||
Compost fertilisation—I | 1.50 | 1.36 | 0.32 | 0.99 | 0.51 | |
Seeding amount—II | 1.90 | 1.74 | 0.41 | 1.27 | 0.65 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Calorific Value (MJ·kg−1 DM) | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Calorific Value (MJ·kg−1 DM) | |||||
0 | 16.9 | 17.1 | 17.2 | 17.4 | 17.2 |
10 | 16.7 | 16.9 | 17.2 | 17.1 | 17.0 |
20 | 16.7 | 16.8 | 17.1 | 17.0 | 16.9 |
Average | 16.8 | 16.9 | 17.2 | 17.2 | 17.0 |
Share of dry matter (%) | Average share of dry matter (%) | ||||
0 | 69.8 | 70.6 | 71.4 | 71.7 | 70.9 |
10 | 70.0 | 71.2 | 71.8 | 72.3 | 71.3 |
20 | 70.4 | 71.4 | 71.9 | 72.4 | 71.5 |
Average | 70.1 | 71.1 | 71.7 | 72.1 | 71.2 |
Compost Fertilisation (Mg·ha−1) | Nitrogen Fertilisation (kg·ha−1) | Average Energy Yield (GJ·ha−1) | |||
---|---|---|---|---|---|
0 | 40 | 80 | 120 | ||
Energy Yield (GJ·ha−1) | |||||
0 | 187.56 | 226.83 | 258.34 | 306.19 | 244.73 |
10 | 209.12 | 245.58 | 278.36 | 311.43 | 261.12 |
20 | 245.88 | 302.61 | 319.97 | 345.33 | 303.45 |
Average | 214.19 | 258.34 | 285.56 | 320.98 | 269.77 |
LSD0.05 for: | 2012–2015 | ||||
Compost fertilisation—I | 7.03 | ||||
Seeding amount—II | 12.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitczak, T.; Jarnuszewski, G.; Malinowski, R. Cultivation of Reed Canary Grass (Phalaris arundinacea L.) on Light Soils in Transitional Temperate Climate to Produce Biomass and Seeds. Agriculture 2023, 13, 2129. https://doi.org/10.3390/agriculture13112129
Kitczak T, Jarnuszewski G, Malinowski R. Cultivation of Reed Canary Grass (Phalaris arundinacea L.) on Light Soils in Transitional Temperate Climate to Produce Biomass and Seeds. Agriculture. 2023; 13(11):2129. https://doi.org/10.3390/agriculture13112129
Chicago/Turabian StyleKitczak, Teodor, Grzegorz Jarnuszewski, and Ryszard Malinowski. 2023. "Cultivation of Reed Canary Grass (Phalaris arundinacea L.) on Light Soils in Transitional Temperate Climate to Produce Biomass and Seeds" Agriculture 13, no. 11: 2129. https://doi.org/10.3390/agriculture13112129
APA StyleKitczak, T., Jarnuszewski, G., & Malinowski, R. (2023). Cultivation of Reed Canary Grass (Phalaris arundinacea L.) on Light Soils in Transitional Temperate Climate to Produce Biomass and Seeds. Agriculture, 13(11), 2129. https://doi.org/10.3390/agriculture13112129