Long-Term Impact of Boron Addition at Various Dosages to a Groundnut-Cabbage System on Crop Yield and Boron Dynamics in Typic Haplustepts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deratils of Experimental Area
2.2. Details of Experiment
2.3. Collection and Analysis of Plant and Soil Samples
2.4. Statistical Analysis
3. Results
3.1. Groundnut and Cabbage Yield
3.2. Boron Content in Groundnut and Cabbage Crops
3.3. Available Boron in Soil
3.4. Boron Fractions in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Marschner, P. Marchner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Pereira, G.L.; Siqueira, J.A.; Batista-Silva, W.; Cardoso, F.B.; Nunes-Nesi, A.; Araújo, W.L. Boron: More than an essential element for land plants? Front. Plant Sci. 2021, 11, 610307. [Google Scholar] [CrossRef]
- Lordkaew, S.; Konsaeng, S.; Jongjaidee, J.; Dell, B.; Rerkasem, B.; Jamjod, S. Variation in responses to boron in rice. Plant Soil 2013, 363, 287–295. [Google Scholar] [CrossRef]
- Sillanpaa, M. Micronutrient Assessment at the Country Level: An International Study. FAO Soils Bulletin No. 63; FAO: Rome, Italy, 1990. [Google Scholar]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–250. [Google Scholar]
- Shukla, A.K.; Behera, S.K.; Prakash, C.; Tripathi, A.; Patra, A.K.; Dwivedi, B.S.; Trivedi, V.; Rao, C.S.; Chaudhari, S.K.; Das, S.; et al. Deficiency of phyto-available sulphur, zinc, boron, iron, copper and manganese in soils of India. Sci. Rep. 2021, 11, 19760. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K.; Prakash, C.; Patra, A.K.; Rao, C.S.; Chaudhari, S.K.; Das, S.; Singh, A.K.; Green, A. Assessing multi-micronutrients deficiency in agricultural soils of India. Sustainability 2021, 13, 9136. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K. All India research project on micro-and secondary nutrients and pollutant elements in soils and plants: Research achievements and future thrusts. Indian J. Fert. 2019, 15, 522–543. [Google Scholar]
- Rego, T.J.; Sahrawat, K.L.; Wani, S.P.; Pardhasaradhi, G. Widespread deficiencies of sulfur, boron, and zinc in Indian semi-arid tropical soils: On-farm crop responses. J. Plant Nutri. 2007, 30, 1569–1583. [Google Scholar] [CrossRef] [Green Version]
- Sahrawat, K.L.; Rego, T.J.; Wani, S.P.; Pardhasaradhi, G. Sulfur, boron, and zinc fertilization effects on grain and straw quality of maize and sorghum grown in semi-arid tropical region of India. J. Plant Nutr. 2008, 31, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Nayak, A.K.; Tripathi, R.; Katara, J.L.; Bihari, P.; Lal, B.; Gautam, P. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages. Int. J. Biometeorol 2018, 62, 1375–1387. [Google Scholar] [CrossRef]
- Javed, M.B.; Malik, Z.; Kamran, M.; Abbasi, G.H.; Majeed, A.; Riaz, M.; Bukhari, M.A.; Mustafa, A.; Ahmar, S.; Mora-Poblete, F.; et al. Assessing yield response and relationship of soil boron fractions with its accumulation in sorghum and cowpea under boron fertilization in different soil series. Sustainability 2021, 13, 4192. [Google Scholar] [CrossRef]
- Brdar-Jokanovi´c, M. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Martens, D.C.; Zelazny, L.W. Distribution and plant availability of soil; boron fractions. Soil Sci. Soc. Am. J. 1987, 51, 1228–1231. [Google Scholar] [CrossRef]
- Hou, J.; Evans, L.J.; Spiers, G.A. Chemical fractionation of soil boron. I. Method development. Can. J. Soil Sci. 1966, 76, 485–491. [Google Scholar] [CrossRef]
- Xu, J.M.; Wang, K.; Bell, R.W.; Yang, Y.A.; Huang, L.B. Soil boron fractions and their relationship to soil properties. Soil Sci. Soc. Am. J. 2011, 65, 133–138. [Google Scholar] [CrossRef]
- Dey, A.; Dwivedi, B.S.; Meena, M.C.; Datta, S.P.; Polara, K.B.; Sobhana, H.K.; Singh, M. Boron fractions in a Vertic Ustochrept as influenced by thirteen years of fertilization and manuring. J. Indian Soc. Soil Sci. 2017, 65, 326–333. [Google Scholar] [CrossRef]
- Das, R.; Kumar, R.; Sarkar, D.; Das, S.; Pradhan, A.K.; Das, D.; Srivastava, M.; Sinha, A.K.; Sahoo, S.; Datta, S.P.; et al. Boron fractions and its availability in soils of the Indo-Gangetic plains. Catena 2023, 222, 106877. [Google Scholar] [CrossRef]
- Padbhushan, R.; Kumar, D. Fractions of soil boron: A review. J. Agri. Sci. 2017, 155, 1023–1032. [Google Scholar] [CrossRef]
- Bhupenchandra, I.; Basumatary, A.; Dutta, S.; Singh, L.K.; Datta, N. Impact of boron fertilization on boron fractions at different crop growth stages in cauliflower-cowpea-okra sequence in an Inceptisols of north east India. J. Plant Nutri. 2020, 43, 1175–1188. [Google Scholar] [CrossRef]
- USDA-Natural Resources Conservation Service Soil Survey Staff. Keys to Soil Taxonomy, 9th ed.; US Government Printing Office: Washington, DC, USA, 2003.
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate No. 939; United States Department of Agriculture: Washington, DC, USA, 1954.
- Hanway, J.J.; Heidel, H. Soil analyses methods as used in Iowa State College Soil Testing Laboratory. Iowa Agri. 1952, 57, 1–31. [Google Scholar]
- Williams, C.H.; Steinbergs, A. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust. J. Agric. Res. 1969, 10, 340–352. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Gupta, U.C. A simplified method for determining hot-water soluble boron in podzol soils. Soil Sci. 1967, 103, 424–428. [Google Scholar] [CrossRef]
- Gaines, T.P.; Mitchell, G.A. Boron determination in plant tissue by the azomethine-H method. Commun. Soil Sci. Plant Anal. 1979, 10, 1099–1108. [Google Scholar] [CrossRef]
- Datta, S.P.; Rattan, R.K.; Suribabu, K.; Datta, S.C. Fractionation and colorimetric determination of boron in soils. J. Plant Nutri. Soil Sci. 2002, 165, 179–184. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Gupta, U.C. Boron Nutrition of Crops. Adv. Agron. 1980, 31, 273–307. [Google Scholar]
- Shukla, A.K.; Behera, S.K. Micro and Secondary Nutrients and Pollutant Elements Research in India. Coordinator Report—AICRP Micro and Secondary Nutrients and Pollutant Elements in Soils and Plants; ICAR-Indian Institute Soil Science: Bhopal, India, 2020; pp. 1–210. [Google Scholar]
- Ansari, M.A.; Prakash, N.; Singh, I.M.; Sharma, P.K.; Punitha, P. Efficacy of boron sources on productivity, profitability and energy use efficiency of groundnut (Arachis hypogaea) under north east hill regions. Indian J. Agri. Sci. 2013, 83, 959–963. [Google Scholar]
- Shrestha, S.; Becker, M.; Lamers, J.P.A.; Wimmer, M.A. Residual effects of B and Zn fertilizers applied to dry season crops on the performance of the follow-up crop of maize in Nepal. J. Plant Nutri. Soil Sci. 2021, 184, 238–245. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.G.; Yang, Y.; Bell, R.W.; Ye, Z.Q. Residual effectiveness of boron fertilizer for oilseed rape in intensively cropped rice-based rotations. Nutr. Cycl. Agroecosys. 2000, 57, 171–181. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H.M. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 25. [Google Scholar]
- Liu, D.Y.; Zhang, W.; Pang, L.L.; Zhang, Y.Q.; Wang, X.Z.; Liu, Y.M.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant Soil 2017, 411, 167–178. [Google Scholar] [CrossRef]
- Butail, N.P.; Kumar, P.; Shukla, A.K.; Behera, S.K.; Sharma, M.; Kumar, P.; Sharma, U.; Takkar, P.N.; Rao, C.S.; Trivedi, V.; et al. Zinc dynamics and yield sustainability in relation to Zn application under maize-wheat cropping on Typic Hapludalfs. Field Crops Res. 2022, 283, 108525. [Google Scholar] [CrossRef]
- Gürel, S.; Başar, H.; Keskin, E.; Dirim, M.S. The determination of soil boron fractions, their relationships to soil properties and the availability to olive (Olea europea L.) trees. Commun. Soil Sci. Plant Anal. 2019, 50, 1044–1062. [Google Scholar] [CrossRef]
- Parks, W.L.; White, J.L. Boron retention by clay and humus systems saturated with various cations. Soil Sci. Soc. Am. J. 1952, 16, 298–300. [Google Scholar] [CrossRef]
- Kanwar, J.S.; Randhawa, N.S. Micronutrient Research in Soils and Plant in India: A Review; Indian Council of Agricultural Research: New Delhi, India, 1974. [Google Scholar]
Crop | Groundnut-Pod Yield (kg ha−1) | Groundnut-Haulm Yield (kg ha−1) | Cabbage-Head Yield (kg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rates (kg B ha−1) | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 |
Frequencies | ||||||||||||
First year only | 2008 de | 2071 cd | 2120 abcd | 2177 abc | 4958 a | 4996 a | 5252 a | 5404 a | 35,700 bc | 36,800 ab | 37,200 ab | 37,900 ab |
Alternate years | 2107 abcd | 2243 a | 2230 a | 2223 ab | 5187 a | 5277 a | 5262 a | 5265 a | 36,800 ab | 37,700 ab | 38,100 ab | 38,500 a |
Every year | 2206 abc | 2203 abc | 2164 abc | 2079 bcd | 5309 a | 5366 a | 5180 a | 4973 a | 37,800 ab | 38,600 a | 39,000 a | 39,200 a |
Control | 1917 e | 4500 b | 34,100 c | |||||||||
F value | 4.79 | 3.25 | 3.42 | |||||||||
p value | ≤0.001 | ≤0.001 | ≤0.001 |
Crop | B Content in Groundnut Pod (mg kg−1) | B Content in Groundnut Haulm (mg kg−1) | B Content in Cabbage Head (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rates (kg B ha−1) | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 |
Frequencies | ||||||||||||
First year only | 12.9 hi | 13.6 gh | 13.9 g | 14.2 fg | 31.3 g | 32.7 f | 33.4 ef | 34.7 de | 25.5 f | 26.1 ef | 26.8 de | 27.4 d |
Alternate years | 14.2 fg | 14.8 ef | 15.4 de | 16.1 cd | 32.9 f | 33.7 ef | 35.6 cd | 36.9 bc | 27.3 d | 27.2 d | 28.5 | 28.9 bc |
Every year | 15.7 d | 16.6 bc | 17.1 ab | 17.5 a | 35.8 cd | 36.6 bc | 37.9 b | 39.4 a | 28.8 c | 29.8 b | 31.2 a | 31.3 a |
Control | 12.4 i | 29.5 h | 24.4 g | |||||||||
F value | 35.3 | 39.3 | 42.1 | |||||||||
p value | ≤0.001 | ≤0.001 | ≤0.001 |
Available B (mg kg−1) | ||||
---|---|---|---|---|
Rates (kg B ha−1) | 0.5 | 1.0 | 1.5 | 2.0 |
Frequencies | ||||
First year only | 0.68 gh | 0.70 fg | 0.76 f | 0.83 e |
Alternate years | 0.95 d | 1.00 d | 1.09 c | 1.18 b |
Every year | 1.18 b | 1.19 b | 1.35 a | 1.40 a |
Control | 0.64 h | |||
F value | 170 | |||
p value | ≤0.001 |
Fraction | RS-B | SA-B | Ox-B | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rates (kg B ha−1) | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 |
Frequencies | ||||||||||||
First year only | 0.62 ef | 0.67 de | 0.66 de | 0.72 c | 1.25 gh | 1.27 fgh | 1.30 efg | 1.35 bcde | 3.15 f | 3.74 e | 3.99 de | 4.27 cde |
Alternate years | 0.67 d | 0.73 c | 0.75 c | 0.83 b | 1.31 defg | 1.32 cdef | 1.34 bcde | 1.38 bcd | 3.97 de | 4.36 cd | 4.45 cd | 4.79 bc |
Every year | 0.85 b | 0.9 a | 0.90 a | 0.93 a | 1.33 bcdef | 1.39 bc | 1.40 b | 1.47 a | 4.46 cd | 4.79 bc | 5.22 b | 5.81 a |
Control | 0.59 g | 1.21 h | 2.67 f | |||||||||
F value | 62.6 | 9.0 | 20.0 | |||||||||
p value | ≤0.001 | ≤0.001 | ≤0.001 | |||||||||
Fraction | Or-B | Res-B | T-B | |||||||||
Rates (kg B ha−1) | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 |
Frequencies | ||||||||||||
First year only | 1.79 ef | 1.88 de | 1.91 de | 2.04 bcde | 116 h | 122 gh | 125 fgh | 127 efg | 123 h | 130 gh | 133 fg | 135 efg |
Alternate years | 1.88 de | 1.93 cde | 2.09 bcd | 2.18 bc | 133 def | 136 cde | 137 cde | 139 bcd | 141 def | 144 cde | 145 cd | 149 cd |
Every year | 1.98 cde | 2.25 b | 2.49 a | 2.59 a | 141 bcd | 145 abc | 149 ab | 152 a | 150 bcd | 154 abc | 159 ab | 163 a |
Control | 1.63 f | 103 i | 109 i | |||||||||
F value | 10.9 | 18.6 | 21.2 | |||||||||
p value | ≤0.001 | ≤0.001 | ≤0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Patel, K.C.; Shukla, A.K.; Behera, S.K.; Ramani, V.P.; Suthar, B.; Patel, R.A. Long-Term Impact of Boron Addition at Various Dosages to a Groundnut-Cabbage System on Crop Yield and Boron Dynamics in Typic Haplustepts. Agriculture 2023, 13, 248. https://doi.org/10.3390/agriculture13020248
Kumar D, Patel KC, Shukla AK, Behera SK, Ramani VP, Suthar B, Patel RA. Long-Term Impact of Boron Addition at Various Dosages to a Groundnut-Cabbage System on Crop Yield and Boron Dynamics in Typic Haplustepts. Agriculture. 2023; 13(2):248. https://doi.org/10.3390/agriculture13020248
Chicago/Turabian StyleKumar, Dileep, Khusvadan C. Patel, Arvind K. Shukla, Sanjib K. Behera, Vinubhai P. Ramani, Bhavin Suthar, and Ravi A. Patel. 2023. "Long-Term Impact of Boron Addition at Various Dosages to a Groundnut-Cabbage System on Crop Yield and Boron Dynamics in Typic Haplustepts" Agriculture 13, no. 2: 248. https://doi.org/10.3390/agriculture13020248
APA StyleKumar, D., Patel, K. C., Shukla, A. K., Behera, S. K., Ramani, V. P., Suthar, B., & Patel, R. A. (2023). Long-Term Impact of Boron Addition at Various Dosages to a Groundnut-Cabbage System on Crop Yield and Boron Dynamics in Typic Haplustepts. Agriculture, 13(2), 248. https://doi.org/10.3390/agriculture13020248