Establishing Critical Leaf Nutrient Concentrations and Identification of Yield Limiting Nutrients for Precise Nutrient Prescriptions of Oil Palm (Elaeis guineensis Jacq) Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Soil Samples and Analysis
2.3. Collection of Leaf Samples and Analysis
2.4. Statistical Analysis and Estimation of DRIS Indices
3. Results
3.1. Soil Nutrient Status of Oil Palm Plantations
3.2. Nutrient Concentrations in Leaves
3.3. Optimum Leaf Nutrient Ranges
3.4. DRIS Norms and DRIS Indices
4. Discussion
4.1. Order of Importance of Nutrients
4.2. Comparison with DRIS Indices of West Godavari District
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goh, K.J.; Hardter, R.; Fairhust, T.H. Fertilizer for maximum return. In Oil Palm: Management for High and Sustainable Yields; Fairhust, T.H., Hardter, R., Eds.; Potash and phosphate Institute, Potash and Phosphate Institute of Canada, International Potash Institute: Singapore, 2003; pp. 279–306. Available online: https://aarsb.com.my/wp-content/AgroMgmt/OilPalm/FertMgmt/Application/Goh,Hardter_FairhurstF[1]%20Fertilizing%20for%20maximum%20returns.pdf (accessed on 24 December 2022).
- Reddy, B.M.C.; Ray, S.S.; Arulraj, S.; Mathur, R.K. Reassessment Report. In Reassessment of Potential Areas for Oil Palm Cultivation in India and Revision of Targets Upwards; ICAR-IIOPR: Pedavegi, India, 2020; p. 132. ISBN 81-87561-59-9. [Google Scholar]
- Rao, B.N.; Suresh, K.; Behera, S.K.; Ramachandrudu, K.; Manorama, K. Nutrient Management in Oil Palm; Technical Bulletin: Pedavegi, India, 2014; pp. 1–24. Available online: https://iiopr.icar.gov.in/pdf/Newsletter%20Jul-Sep%202014.pdf (accessed on 15 November 2022)AP: ICAR-IIOPR.
- McLaughlin, M.J.; Reuter, D.; Rayment, G.E. Soil testing-Principles and concepts. In Soil Analysis: An Interpretation Manual; Perverill, K.I., Sparrow, L.A., Reuter, D.J., Eds.; CSIRO Publishing: Collingwood, Australia, 1999; pp. 1–21. [Google Scholar]
- Beaufils, E.R. Diagnosis and Recommendation Integrated System (DRIS): A general scheme for experimentation and calibration based on principals developed from research in plant nutrition. Univ. Natal Soil Sci. 1973, 1, 1–132. [Google Scholar]
- Filho, F.D.A.A.M. DRIS: Concepts and applications on nutritional diagnosis in fruit crops. Sci. Agricola 2004, 61, 550–560. [Google Scholar] [CrossRef]
- De Matos, G.S.B.; Fernandes, A.R.; Wadt, P.G.S.; Pina, A.J.D.A.; Franzini, V.I.; Ramos, H.M.N. The Use of DRIS for Nutritional Diagnosis in Oil Palm in the State of Pará. Rev. Bras. Ciência Solo 2017, 41, e0150466. [Google Scholar] [CrossRef]
- Rao, B.N.; Suresh, K.; Behera, S.K.; Ramachandrudu, K.; Manorama, K. Nutrient Management in Oil Palm; ICAR-IIOPR; Technical Bulletin: Pedavegi, India, 2016; pp. 1–24. [Google Scholar]
- Behera, S.K.; Rao, B.N.; Suresh, K.; Ramachandrudu, K.; Manorama, K. Soil fertility, leaf nutrient concentration and yield limiting nutrients in oil palm (Elaeisguineensis) plantations of Surat district of Gujarat. Ind. J. Agrl. Sci. 2016, 86, 409–413. [Google Scholar]
- Behera, S.K.; Arvind Kumar, S.; Suresh, K.; Mathur, R.K. Nutritional imbalances and nutrient management in oil palm. In Natural Resource Management in Horticultural Crops; Subhra, S.R., Poonam, K., Tarun, A., Eds.; Today & Tomorrow’s Printers and Publishers: Delhi, India, 2022; pp. 161–185. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis, Indian; Prentice Hall of India: New Delhi, India, 1973; Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1453838 (accessed on 9 November 2022).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Hanway, J.J.; Heidel, H. Soil Analyses Methods as Used in Lowa State College Soil Testing Laboratory; Iowa State College of Agriculture: Ames, IA, USA, 1952. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. Circular of United States Department of Agriculture No. 939. 1954. Available online: https://ia903207.us.archive.org/21/items/estimationofavai939olse/estimationofavai939olse.pdf (accessed on 12 November 2022).
- Jones, J.B., Jr. Soil test methods: Past, present, and future use of soil extractants. Commun. Soil Sci. Plant Anal. 1998, 29, 1543–1552. [Google Scholar] [CrossRef]
- Williams, C.; Steinbergs, A. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust. J. Agric. Res. 1959, 10, 340–352. [Google Scholar] [CrossRef]
- Gupta, U.C. A simplified method for determining hot-watersoluble boron in podzol soils. Soil Sci. 1967, 103, 424–428. [Google Scholar] [CrossRef]
- Behera, S.K.; Suresh, K. Soil and leaf sampling in oil palm. In Compendium of Lectures on Soil and Leaf Nutrient Analysis in Oil Palm; Prasad, M.V., Behera, S.K., Mounika, B., Eds.; Directorate of Oil Palm Research: Pedavegi, India, 2013; pp. 14–19. [Google Scholar]
- Walworth, J.L.; Sumner, M.E. The Diagnosis and Recommendation Integrated System (DRIS). Adv. Soil Sci. 1987, 6, 149–188. [Google Scholar] [CrossRef]
- Beaufils, E.R.; Sumner, M.E. Application of DRIS approach for calibrating soil, plant yield and plant quality factors of sugarcane. Proc. S. Afr. Sugar Technol. Assoc. 1976, 50, 118–124. [Google Scholar]
- Bhargava, B.S. Leaf analysis for nutrient diagnosis, recommendation and management in fruit crops. J. Indian Soc. Soil Sci. 2002, 50, 362–373. [Google Scholar]
- Behera, S.K.; Suresh, K.; Rao, B.N.; Ramachandrudu, K.; Manorama, K.; Harinarayana, P. Soil Fertility and Yield Limiting Nutrients in Oil Palm Plantations of North-Eastern State Mizoram of India. J. Plant Nutr. 2017, 40, 1165–1171. [Google Scholar] [CrossRef]
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Prasad, M.V.; Sarkar, A.; Jameema, J. Performance of oil palm production technologies. Indian Res. J. Ext. Educ. 2013, 10, 10–15. [Google Scholar]
- Adam, H.; Collin, M.; Richaud, F.; Beule, T.; Cros, D.; Omore, A.; Nodichao, L.; Nouy, B.; Tregear, J.W. Environmental regulaton of sex determination in oil palm: Current knowledge and insights from other species. Ann Bot. 2011, 108, 1529–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; International Potash Institute: Basel, Switzerland, 1987. [Google Scholar]
- Manorama, K.; Behera, S.K.; Suresh, K.; Prasad, M.V.; Mathur, R.K.; Harinarayana, P. Mulching and technological interventions avoid land degradation in an intensive oil palm (Elaeis guineensis Jacq.) production system. Land Degrad. Dev. 2021, 32, 1–13. [Google Scholar] [CrossRef]
- Tiemann, T.T.; Donough, C.R.; Lim, Y.L.; Hardter, R.; Norton, R.; Tao, H.H.; Jaramillo, R.; Satyanarayana, T.; Zingore, S.; Oberthur, T. Feeding the palm: A Review of Oil Palm Nutrition. Adv. Agron. 2018, 152, 149–243. [Google Scholar] [CrossRef]
- Davidson, L. Management for efficient, cost effective and protective oil palm plantations. In Progress, Prospects, Challenges towards the 21st Century (Agriculture) Presented at the PORIM International Palm Oil Conference; Palm Oil Research Institute of Malaysia, Ministry of Primary Industries: Kaulalumpur, Malaysia, 1991; pp. 153–167. [Google Scholar]
- Behera, S.K.; Shukla, A.K.; Suresh, K.; Mathur, R.K. Estimation of soil properties and leaf nutrients status of oil palm plantations in an intensively cultivated region of India. Curr. Sci. 2019, 117, 497–502. [Google Scholar] [CrossRef]
- Fairhurst, T.; Hardter, R. (Eds.) Oil Palm: Management for Large and Sustainable Yields, 3rd ed.; Potash & Phosphate Institute (u.a): Singapore, 2003. [Google Scholar]
Nut./Ratio | Low Yielding | High Yielding | Variance Ratio (Sa/Sb) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Var (Sa) | SD | CV | Mean | Var (Sb) | SD | CV | ||
N | 2.86 | 0.54 | 0.73 | 25.6 | 3.18 | 0.70 | 0.83 | 26.10 | 0.77 |
P | 0.20 | 0.00 | 0.03 | 16.68 | 0.20 | 0.00 | 0.05 | 25.00 | 0.00 |
K | 0.70 | 0.04 | 0.20 | 28.24 | 0.73 | 0.04 | 0.14 | 19.18 | 1.00 |
Mg | 0.62 | 0.02 | 0.14 | 23.05 | 0.60 | 0.01 | 0.12 | 20.00 | 2.00 |
B | 71.00 | 499.81 | 22.36 | 31.49 | 73.84 | 46806.3 | 21.65 | 29.32 | 0.01 |
N/P | 14.95 | 46.75 | 6.84 | 45.77 | 17.89 | 143.25 | 11.97 | 66.91 | 0.33 |
N/K | 4.55 | 4.86 | 2.20 | 48.42 | 4.52 | 1.77 | 1.33 | 29.42 | 2.74 |
N/Mg | 4.94 | 4.49 | 2.12 | 42.87 | 5.52 | 4.23 | 2.06 | 37.32 | 1.06 |
B/N | 27.09 | 147.09 | 12.13 | 44.77 | 25.69 | 133.79 | 11.57 | 45.04 | 1.10 |
K/P | 3.67 | 2.98 | 1.73 | 46.96 | 3.90 | 2.95 | 1.72 | 44.10 | 1.01 |
Mg/P | 3.16 | 0.60 | 0.77 | 24.49 | 3.25 | 2.52 | 1.59 | 48.92 | 0.24 |
B/P | 377.02 | 43694.31 | 209.03 | 55.44 | 402.35 | 47810.03 | 218.66 | 54.35 | 0.91 |
K/Mg | 1.19 | 0.25 | 0.50 | 41.95 | 1.25 | 0.16 | 0.40 | 32.00 | 1.56 |
B/K | 110.56 | 3201.90 | 56.59 | 51.18 | 109.66 | 2066.47 | 45.46 | 41.46 | 1.55 |
B/Mg | 123.23 | 3571.99 | 59.77 | 48.87 | 126.97 | 1749.90 | 41.83 | 32.94 | 2.04 |
Soil Property | Soil Layer | Min | Max | Mean | SD | CV (%) | Skew | Kurt |
---|---|---|---|---|---|---|---|---|
pH | Surface | 5.40 | 8.28 | 7.32 | 0.67 | 9.15 | −1.22 | 1.04 |
Sub-surface | 5.47 | 8.45 | 7.37 | 0.70 | 9.50 | −1.29 | 1.28 | |
Deep | 5.23 | 8.54 | 7.41 | 0.74 | 9.99 | −1.29 | 1.46 | |
EC, dS/m | Surface | 0.13 | 0.77 | 0.25 | 0.13 | 52.00 | 2.08 | 4.93 |
Sub-surface | 0.08 | 0.89 | 0.25 | 0.15 | 60.00 | 2.25 | 6.05 | |
Deep | 0.10 | 0.89 | 0.25 | 0.13 | 52.00 | 2.26 | 7.96 | |
OC, g/kg | Surface | 2.5 | 14.2 | 0.87 | 0.27 | 31.03 | −0.05 | −0.43 |
Sub-surface | 2.0 | 11.7 | 0.48 | 0.22 | 45.83 | 0.56 | 1.10 | |
Deep | 0.80 | 10.5 | 0.43 | 0.21 | 48.84 | 0.78 | 0.65 | |
Olsen-P, mg/kg | Surface | 17.45 | 419.58 | 101.47 | 56.86 | 56.04 | 2.89 | 13.94 |
Sub-surface | 31.80 | 165.79 | 86.28 | 33.27 | 38.56 | 0.78 | −0.11 | |
Deep | 24.48 | 218.37 | 77.75 | 34.89 | 44.87 | 1.15 | 2.68 | |
NH4OAc-K, mg/kg | Surface | 87.58 | 1263.25 | 566.14 | 351.74 | 62.13 | 0.42 | −1.07 |
Sub-surface | 86.46 | 1123.70 | 530.29 | 303.78 | 57.29 | 0.36 | −0.93 | |
Deep | 66.64 | 1053.35 | 532.24 | 333.20 | 62.60 | 0.54 | −0.63 | |
Exch.Ca, mg/kg | Surface | 1.55 | 8.69 | 4.72 | 2.00 | 42.37 | 0.38 | −0.62 |
Sub-surface | 1.18 | 8.22 | 4.41 | 1.84 | 41.72 | 0.43 | −0.55 | |
Deep | 1.22 | 8.77 | 4.41 | 1.90 | 43.08 | 0.59 | −0.33 | |
Exch.Mg, mg/kg | Surface | 0.60 | 19.0 | 2.46 | 1.21 | 65.84 | 0.54 | 2.23 |
Sub-surface | 0.50 | 4.60 | 2.28 | 0.96 | 42.11 | 0.18 | −0.33 | |
Deep | 0.50 | 4.50 | 2.21 | 0.92 | 41.63 | 0.15 | 0.15 | |
CaCl2-S, mg/kg | Surface | 21.25 | 128.75 | 60.86 | 21.52 | 35.36 | 0.72 | 0.53 |
Sub-surface | 32.81 | 266.88 | 67.19 | 32.05 | 47.70 | 3.79 | 22.32 | |
Deep | 25.94 | 153.44 | 67.31 | 26.25 | 39.00 | 1.08 | 1.37 | |
HWB, mg/kg | Surface | 3.19 | 14.03 | 5.98 | 2.02 | 33.78 | 1.68 | 3.7 |
Sub-surface | 2.15 | 12.29 | 5.47 | 1.78 | 32.54 | 1.31 | 2.87 | |
Deep | 2.43 | 19.58 | 5.50 | 2.43 | 44.18 | 3.50 | 17.47 |
Nutrient | Min | Max | Mean | SD | CV |
---|---|---|---|---|---|
N (%) | 1.47 | 4.77 | 3.01 | 0.79 | 26.21 |
P (%) | 0.07 | 0.36 | 0.20 | 0.04 | 21.04 |
K (%) | 0.26 | 1.04 | 0.72 | 0.19 | 27.02 |
Ca (%) | 0.84 | 1.68 | 1.19 | 0.18 | 15.04 |
Mg (%) | 0.31 | 0.82 | 0.61 | 0.13 | 21.62 |
S (%) | 0.01 | 0.26 | 0.17 | 0.05 | 29.29 |
B (mg kg−1) | 25.66 | 115.49 | 72.32 | 21.91 | 30.30 |
Nutrient | Deficient | Low | Optimum | High | Excess |
---|---|---|---|---|---|
N (%) | <0.96 | 0.96–2.07 | 2.07–4.29 | 4.29–5.40 | >5.40 |
P (%) | <0.06 | 0.06–0.13 | 0.13–0.27 | 0.27–0.34 | >0.34 |
K (%) | <0.31 | 0.31–0.52 | 0.52–0.94 | 0.94–1.15 | >1.15 |
Ca (%) | <0.73 | 0.73–0.94 | 0.94–1.36 | 1.36–1.57 | >1.57 |
S (%) | <0.028 | 0.028–0.098 | 0.098–0.238 | 0.238–0.308 | >0.308 |
B (mg kg−1) | <16.10 | 16.10–44.97 | 44.97–102.70 | 102.70–131.57 | >131.57 |
Mg (%) | <0.28 | 0.28–0.44 | 0.44–0.76 | 0.76–0.92 | >0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamireddy, M.; Behera, S.K.; Kancherla, S. Establishing Critical Leaf Nutrient Concentrations and Identification of Yield Limiting Nutrients for Precise Nutrient Prescriptions of Oil Palm (Elaeis guineensis Jacq) Plantations. Agriculture 2023, 13, 453. https://doi.org/10.3390/agriculture13020453
Kamireddy M, Behera SK, Kancherla S. Establishing Critical Leaf Nutrient Concentrations and Identification of Yield Limiting Nutrients for Precise Nutrient Prescriptions of Oil Palm (Elaeis guineensis Jacq) Plantations. Agriculture. 2023; 13(2):453. https://doi.org/10.3390/agriculture13020453
Chicago/Turabian StyleKamireddy, Manorama, Sanjib K. Behera, and Suresh Kancherla. 2023. "Establishing Critical Leaf Nutrient Concentrations and Identification of Yield Limiting Nutrients for Precise Nutrient Prescriptions of Oil Palm (Elaeis guineensis Jacq) Plantations" Agriculture 13, no. 2: 453. https://doi.org/10.3390/agriculture13020453
APA StyleKamireddy, M., Behera, S. K., & Kancherla, S. (2023). Establishing Critical Leaf Nutrient Concentrations and Identification of Yield Limiting Nutrients for Precise Nutrient Prescriptions of Oil Palm (Elaeis guineensis Jacq) Plantations. Agriculture, 13(2), 453. https://doi.org/10.3390/agriculture13020453