Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Specification and Characteristics
2.2. Treatment Details
2.3. Harvesting and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Impact of Manures and Fertilizers Application on Plant Growth and Yield Attributes of Wheat
3.2. Impact of Manures and Fertilizers Application on Wheat Grain and Straw Yield
3.3. Impact of Manures and Fertilizers Application on Macronutrients Concentration of Grain and Straw
3.4. Impact of Manures and Fertilizers Application on Micronutrients Concentration of Grain and Straw
3.5. Impact of Manures and Fertilizers Application on Macronutrients Uptake of Grain and Straw
3.6. Impact of Manures and Fertilizers Application on Micronutrients Uptake of Grain and Straw
3.7. Effect of Manures and Fertilizers Application on Soil Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.R.; Shaikh, M.S.; Siddique, A.B.; Sumon, M.H. Yield and nutrient uptake of wheat as influenced by integrated use of manures and fertilizers. J. Bangladesh Agric. Univ. 2014, 12, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability issues on rice-wheat cropping system. Int. Soil Water Conser. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Singh, P.; Singh, H.; Abdel-Hafez, S.H.; Sayed, S.; Gaber, A.; et al. Enrichment of zinc and iron micronutrients in lentil (Lens culinaris Medik.) through biofortification. Molecules 2021, 26, 7671. [Google Scholar] [CrossRef] [PubMed]
- Ul-Allah, S.; Iqbal, M.; Maqsood, S.; Naeem, M.; Ijaz, M.; Ashfaq, W.; Hussain, M. Improving the performance of bread wheat genotypes by managing irrigation and nitrogen under semi-arid conditions. Arch. Agron. Soil Sci. 2018, 64, 1678–1689. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Hasan, W.; Ul-Allah, S.; Tanveer, M.; Farooq, M.; Nawaz, A. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric. Water Manag. 2018, 201, 152–166. [Google Scholar] [CrossRef]
- Ul-Allah, S.; Khan, A.A.; Burkert, A.; Wachendorf, M. Socio-economic aspects of fodder production in urban and peri-urban areas of Faisalabad. Pak. J. Agric. Sci. 2014, 51, 483–490. [Google Scholar]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Raza, S.T.; Wu, J.; Rene, E.R.; Ali, Z.; Chen, Z. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. J. Cleaner Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, Y.K.; Dotaniya, M.L. Effect of press mud and FYM application with zinc sulphate on yield of hybrid rice. J. Environ. Agric. Sci. 2014, 1, 21–34. [Google Scholar]
- Damse, D.N.; Bhaleka, M.N.; Pawar, P.K. Effect of integrated nutrient management on growth and yield of garlic. Bioscan 2014, 9, 1557–1560. [Google Scholar]
- Dhaliwal, S.S.; Ram, H.; Walia, S.S.; Walia, M.K.; Kumar, B.; Dhaliwal, M.K. Long-term influence of nutrient management on carbon and nutrients in Typic-Ustochrept soils. Commun. Soil Sci. Plant Anal. 2019, 50, 2420–2428. [Google Scholar] [CrossRef]
- Kemal, Y.O.; Abera, M. Contribution of integrated nutrient management practices for sustainable crop productivity, nutrient uptake and soil nutrient status in maize based cropping systems. J. Nutr. 2015, 2, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerda, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.; Wu, J.; Han, X.; Teng, Y.; Zhou, M.; Ren, Y.; Jiang, P. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Melo, T.M.; Bottlinger, M.; Schulz, E.; Leandro, W.M.; Oliveira, S.B.; Filho, A.M.A.; El-Naggar, A.; Bolan, N.; Wang, H.; Ok, Y.S.; et al. Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers’ acceptance. J. Environ. Manag. 2019, 237, 200–214. [Google Scholar] [CrossRef]
- Srivatsava, P.K.; Maruthi-Sankar, G.R.; Vijaya Kumar, P.; Singh, S.P.; Rani, N.; Singh, A.; Agarwal, V.K. Effects of organic and inorganic fertilizers on soil and plant nutrients and yields of pearl millet and wheat under semi-arid Inceptisols in India. Commun. Soil Sci. Plant Anal. 2015, 46, 2595–2614. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismanyoky, T.; Lipiec, J.; Tits, M.; Toth, Z.; Katterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strat. Global Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Randhawa, M.; Dhaliwal, S.S.; Sharma, V.; Toor, A.S.; Sharma, A.; Kaur, M. Ensuring yield sustainability and nutritional security through enriching manures with fertilizers under rice-wheat system in North-western India. J. Plant Nutr. 2021, 45, 540–557. [Google Scholar] [CrossRef]
- Sarwar, G.; Hussain, N.; Schmeisky, H.; Muhammad, S. Use of compost an environment friendly technology for enhancing rice-wheat production in Pakistan. Pak. J. Bot. 2007, 39, 1553–1558. [Google Scholar]
- Hua, W.; Luo, P.; An, N.; Cai, F.; Zhang, S.; Chen, K.; Yang, J.; Han, X. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci. Rep. 2020, 10, 14882. [Google Scholar] [CrossRef] [PubMed]
- Tewari, G.S.; Pareek, N.; Gautam, P. Crop residue management for improving soil fertility and enhancing crop production. Bull. Environ. Pharmacol. Life Sci. 2018, 8, 84–89. [Google Scholar]
- Sharma, S.; Dhaliwal, S.S. Rice residue incorporation and nitrogen application: Effects on yield and micronutrient transformations under rice-wheat cropping system. J. Plant Nutr. 2020, 43, 2697–2715. [Google Scholar] [CrossRef]
- Anonymous. Package of Practices for Kharif Crops; Punjab Agricultural University: Ludhiana, India, 2016. [Google Scholar]
- Jackson, M.L. A manual of methods useful for instruction and research in soil chemistry, physical chemistry, soil fertility and soil genesis. In Soil Chemical Analysis-Advanced Course, 2nd ed.; Scientific Publisher: Madison, WI, USA, 1973. [Google Scholar]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Agriculture Handbook, No. 60; USDA: Washington, DC, USA, 1954; pp. 7–33.
- Walkley, A.; Black, C.A. An examination of the Degtjaref method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939.
- Merwin, H.D.; Peech, M. Exchangeability of soil potassium in sand, silt and clay fractions as influenced by the nature of the complimentary exchangeable cations. Soil Sci. Soc. Am. Proc. 1950, 15, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test method for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Kumar, B.; Dhaliwal, S.S. Zinc biofortification of dual purpose cowpea [Vigna unguiculata (L.) Walp.] for enhancing the productivity and nutritional quality in a semi-arid regions of India. Arch. Agron. Soil Sci. 2021, 68, 1034–1048. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A. Method of Soil Analysis Part 3; Johnston, C.T., Summer, M.E., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Sadana, U.S. Practical Manual, 1st ed.; Department of Soil Science, PAU: Ludhiana, India, 2007; pp. 1–57. [Google Scholar]
- Page, A.L.; Miller, R.H.; Kenney, D.R. Methods of Soil Analysis; Chemical and Microbiological Properties; American Society of Agronomy Monographs: Madison, WI, USA, 1982; pp. 256–346. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part 2; American Society of Agronomy: Madison, WI, USA, 1982; pp. 1–24. [Google Scholar]
- Hasanuzzaman, M.; Ahamed, K.U.; Rahmatullah, N.M.; Akhter, N.; Nahar, K.; Rahman, M.L. Plant growth characters and productivity of wetland rice (Oryza sativa L.) as affected by application of different manures. Emir. J. Food Agric. 2010, 22, 46–58. [Google Scholar]
- Apriyani, S.; Wahyuni, S.; Harsanti, E.S.; Zu’amah, H.; Kartikawati, R.; Sutriadi, M.T. Effect of inorganic fertilizer and farmyard manure to available P, growth and rice yield in rainfed lowland central java. IOP Earth Environ. Sci. 2021, 648, 012190. [Google Scholar] [CrossRef]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Verma, K.; Bindra, A.D.; Singh, J.; Negi, S.C.; Datt, N.; Rana, U.; Manuja, S. Effect of integrated nutrient management on growth, yield attributes and yield of maize and wheat in maize-wheat cropping system in mid hills of Himachal Pradesh. Int. J. Pure Appl. Biosci. 2018, 6, 282–301. [Google Scholar] [CrossRef]
- Miller, H.B. Poultry litter induces tillering in rice. J. Sustain. Agric. 2007, 31, 151–160. [Google Scholar] [CrossRef]
- Kavinder, V.S.; Hooda, Y.P.; Malik, D.; Kavita, H. Effect of farm yard manure and nitrogen application on growth and productivity of wheat under long term experimental conditions. Curr. J. Appl. Sci. Technol. 2019, 35, 1–7. [Google Scholar]
- Purbajanti, E.D.; Slamet, W.; Fuskhah, E.; Rosyida. Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). Earth Environ. Sci. 2019, 250, 012048. [Google Scholar] [CrossRef]
- Gowda, C.; Biradarpatil, N.K.; Patil, B.N.; Awaknavar, J.S.; Ninganur, B.T.; Hunje, R. Effect of organic manures on growth, seed yield and quality of wheat. Karnataka J. Agric. Sci. 2008, 21, 366–368. [Google Scholar]
- Mohsin, A.; Ahmad, J.; Ahmad, A.; Ikram, R.; Mubeen, K. Effect of nitrogen application through different combinations of urea and farm yard manure on the performance of spring maize (Zea mays L.). J. Anim. Plant Sci. 2012, 22, 195–198. [Google Scholar]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-term addition of compost and NP fertilizer increases crop yield and improves soil quality in experiments on smallholder farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, Y.; Hu, Y.; Christie, P.; Zhang, J.; Li, X. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China plain. Soil Till. Res. 2016, 155, 85–94. [Google Scholar] [CrossRef]
- Asit, M.; Ashok, K.; Dhyan, S.; Anand, S.; Ebhin, M.R. Effect of long term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 2007, 98, 3585–3592. [Google Scholar]
- El-Ghamry, A.M.; Abd El-Hamid, A.M.; Mosa, A.A. Effect of farmyard manure and foliar application of micronutrients on yield characteristics of wheat grown on salt affected soil. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 460–465. [Google Scholar]
- Khater, E.A.; Ibrahim, S.B.; Awadalla, A.A. Utilization of some form organic wastes for improving soil productivity af the newly reclaimed areas at El-Fayoum governorate Egypt. Egypt J. Soil Sci. 2004, 44, 333–354. [Google Scholar]
- Gupta, R.K.; Arora, B.R.; Sharma, K.N.; Ahluwalia, S.K. Influence of biogas slurry and farmyard manure application on the changes in soil fertility under rice-wheat sequence. J. Indian Soc. Soil Sci. 2000, 48, 500–505. [Google Scholar]
- Hegde, D.M. Long-term sustainability of productivity in an irrigated sorghum-wheat system through integrated nutrient supply. Field Crop Res. 1996, 48, 167–175. [Google Scholar] [CrossRef]
- Bharadwaj, V.; Bansal, R.S.K.; Maheswari, S.C.; Omanwar, P.K. Long-term effects of continuous rotational cropping and fertilization on crop yields and soil properties-III. Changes in soil fractions of N, P and K of the soil. J. Indian Soc. Soil Sci. 1994, 42, 392–397. [Google Scholar]
- Tewolde, H.; Sistani, K.R.; Feng, G.; Menkir, A. Does fertilizing corn with poultry litter enrich the grain with mineral nutrients. Agron. J. 2019, 111, 2472–2484. [Google Scholar] [CrossRef]
- Swarup, A. Effect of micronutrient and farmyard manure on the yield and micronutrient of rice and wheat grown on a sodic soil. J. Indian Soc. Soil Sci. 1984, 32, 397–399. [Google Scholar]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.; Kundu, S.; Vittal, K.; Patel, J.; Patel, M. Long–term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet–cluster bean–castor rotation in Western India. Land Degrad. Develop. 2014, 25, 173–183. [Google Scholar] [CrossRef]
- Kuziemska, B.; Tr-ebicka, J.; Wysokinski, A. Uptake and utilization of nitrogen from organic fertilizers influenced by different doses of copper. Agronomy 2021, 11, 1219. [Google Scholar] [CrossRef]
- Peng, X.; Maharjan, B.; Yu, C.; Su, A.; Jin, V.; Ferguson, R.B. A laboratory evaluation of ammonia volatilization and nitrate leaching following nitrogen fertilizer application on a coarse-textured soil. Agron. J. 2015, 107, 871–879. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Fan, M.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain. Nutr. Cycl. Agroecosys. 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Akter, S.; Islam, M.R.; Rahman, M.M.; Hoque, M.M. Influences of nitrogen supplied from inorganic and organic sources on the yield, nutrient uptake and nitrogen use efficiency of BRRI dhan29. Bangladesh J. Crop Sci. 2012, 22–23, 151–158. [Google Scholar]
- Saha, S.B.; Saha, T.; Seth, S.; Dasgupta, M.; Ray, B.; Pal, S.; Pati, S.K.; Mukhopadhyay, S.K.; Hazra, G.C. Micronutrients availability in soil-plant system in response to long-term integrated nutrient management under rice-wheat cropping system. J. Soil Sci. Plant Nutr. 2019, 19, 712–724. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhang, J.B.; Zhao, B.Z.; Deng, X.H.; Xin, X.L.; Qin, S.W. Influence of different long-term fertilization practices on accumulation and availability of micronutrients in typical loamy fluvo-aquic soil. Acta Pedol. Sin. 2012, 49, 1104–1113. [Google Scholar]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Malvi, U.R. Interaction of micronutrients with major nutrients with special reference to potassium. Karn. J. Agric. Sci. 2011, 24, 106–109. [Google Scholar]
- Lakshmanan, R.; Prasad, R.; Jain, M.C. Yield and uptake of micronutrients by rice as influenced by duration of variety and nitrogen utilization. Arch. Agron. Soil Sci. 2005, 51, 1–14. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 2011, 53, 118–125. [Google Scholar] [CrossRef]
- Erenoglu, E.B.; Kutman, U.B.; Ceylan, Y.; Yildiz, B.; Cakmak, I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol. 2011, 189, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Kutman, U.B.; Yildiz, B.; Oztruk, L.; Cakmal, I. Biofortification of durum wheat with zinc through soil and foliar application of nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Hao, H.L.; Wei, Y.Z.; Yang, X.E.; Feng, Y.; Wu, C.Y. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci. 2007, 14, 289–294. [Google Scholar] [CrossRef]
- Yadava, N.; Malik, R.S. Effect of nitrate and manganese application on manganese pools in soil and its uptake in wheat (Triticum aestivum L.). Ecoscan 2016, 10, 97–103. [Google Scholar]
- Bader, B.R.; Taban, S.K.; Fahmi, A.S.; Abood, M.A.; Hamdi, G.J. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L.) growth. J. Saudi Soc. Agric. Sci. 2021, 20, 390–394. [Google Scholar] [CrossRef]
- Agbede, T.M. Effect of tillage, biochar, poultry manure and NPK 15-15-15 fertilizer, and their mixture on soil properties, growth and carrot (Daucus carota L.) yield under tropical conditions. Heliyon 2021, 7, e07391. [Google Scholar] [CrossRef] [PubMed]
Sr No | Treatments | Rice | Wheat | ||
---|---|---|---|---|---|
Manure-N | Fertilizer-N | Manure-N | Fertilizer-N | ||
T1 | Control (No fertilizers) | - | - | - | - |
T2 | Farmyard manure (15 t ha−1) | 90 | - | - | - |
T3 | Poultry manure (6 t ha−1) | 72 | - | - | - |
T4 | Press mud (15 t ha−1) | 120 | - | - | - |
T5 | Rice straw compost (6 t ha−1) | 30 | - | - | - |
T6 | Farmyard manure (15 t ha−1) + 50% RDN | 90 | 20 | - | 62 |
T7 | Poultry manure (6 t ha−1) + 50% RDN | 72 | 20 | - | 62 |
T8 | Press mud (15 t ha−1) + 50% RDN | 120 | 20 | - | 62 |
T9 | Rice straw compost (6 t ha−1) + 50 % RDN | 30 | 20 | - | 62 |
T10 | 75% Recommended fertilizers RDN | - | 30 | - | 93 |
T11 | Farmyard manure (15 t ha−1) + 75% RDN | 90 | 30 | - | 93 |
T12 | Poultry manure (6 t ha−1) + 75% RDN | 72 | 30 | - | 93 |
T13 | Press mud (15 t ha−1) + 75% RDN | 120 | 30 | - | 93 |
T14 | Rice straw compost (6 t ha−1) + 75% RDN | 30 | 30 | - | 93 |
T15 | 100% Recommended fertilizers RDN | - | 40 | - | 125 |
Treatments | Plant Height (cm) | No. of Productive Tillers per Meter Row Length | Chlorophyll Content |
---|---|---|---|
T1 | 73.1 e | 48 | 28.1 f |
T2 | 109.3 bcd | 55 | 38.3 cd |
T3 | 102.9 cd | 53 | 34.4 de |
T4 | 96.8 d | 50 | 33.2 e |
T5 | 100.8 d | 51 | 33.1 e |
T6 | 114.3 abc | 63 | 39.9 bc |
T7 | 108.7 bcd | 63 | 36.9 cde |
T8 | 97.4 d | 54 | 33.1 e |
T9 | 104.4 cd | 61 | 39.5 bc |
T10 | 103.8 cd | 58 | 38.0 cde |
T11 | 125.2 a | 68 | 45.0 a |
T12 | 121.3 ab | 66 | 43.9 ab |
T13 | 108.9 bcd | 62 | 41.0 abc |
T14 | 118.4 ab | 63 | 42.7 ab |
T15 | 108.7 bcd | 60 | 41.7 abc |
LSD (p ≤ 0.05) | 13.2 | NS | 4.9 |
Treatments | Wheat Yield (q ha−1) | |||||
---|---|---|---|---|---|---|
Grain | Straw | |||||
I Year | II Year | Average | I Year | II Year | Average | |
T1 | 32.8 ef | 33.3 h | 33.1 f | 53.8 de | 62.5 d | 58.2 f |
T2 | 31.9 ef | 42.2 efg | 37.1 ef | 52.8 de | 75.6 abc | 64.1 def |
T3 | 34.1 df | 39.1 g | 36.6 ef | 48.5 e | 75.5 abc | 62.0 ef |
T4 | 31.4 f | 39.3 g | 35.4 ef | 52.9 de | 67.8 cd | 60.4 ef |
T5 | 32.3 ef | 39.7 fg | 35.9 ef | 51.3 e | 69.9 bcd | 60.6 ef |
T6 | 37.7 cd | 44.3 ef | 41.0 ce | 60.3 cd | 76.7 abc | 68.5 bcde |
T7 | 36.7 cd | 41.3 efg | 39.0 def | 59.8 cd | 71.7 bcd | 65.7 def |
T8 | 31.6 ef | 43.2 efg | 37.4 ef | 58.4 cd | 68.8 cd | 63.6 ef |
T9 | 34.8 def | 42.7 efg | 38.7 def | 58.2 cd | 70.7 bcd | 64.4 def |
T10 | 35.3 de | 45.3 cde | 40.3 cd | 64.5 bc | 69.9 bcd | 67.2 cdef |
T11 | 45.9 a | 55.7 a | 50.8 a | 75.9 a | 85.9 a | 80.9 a |
T12 | 44.5 a | 50.0 bc | 47.3 ab | 74.9 a | 78.9 ab | 76.9 abc |
T13 | 43.9 ab | 44.1 def | 43.9 bcd | 63.6 bc | 72.4 bcd | 68.0 bcdef |
T14 | 39.4 c | 53.0 ab | 46.2 abc | 69.6 ab | 78.5 abc | 74.1 abcd |
T15 | 40.1 bc | 48.6 bcd | 44.4 bcd | 75.2 a | 80.7 ab | 77.9 ab |
LSD (p ≤ 0.05) | 3.8 | 4.8 | 5.9 | 8.7 | 10.8 | 10.0 |
Treatments | Macronutrients Uptake (kg ha−1) by Wheat | |||||
---|---|---|---|---|---|---|
Grain | Straw | |||||
N | P | K | N | P | K | |
T1 | 4.03 h | 1.64 j | 1.70 g | 0.59 h | 0.39 h | 6.24 g |
T2 | 4.87 efg | 2.13 fgh | 2.31 f | 0.86 efgh | 0.62 efg | 8.42 def |
T3 | 4.69 fg | 2.02 ghi | 2.21 f | 0.83 efgh | 0.55 fgh | 8.06 defg |
T4 | 4.38 gh | 1.83 ij | 1.94 fg | 0.61 gh | 0.49 gh | 6.88 fg |
T5 | 4.53 fgh | 1.93 hi | 2.04 fg | 0.84 efgh | 0.54 fgh | 7.61 efg |
T6 | 5.52 cd | 2.57 cd | 3.39 cd | 1.06 be | 0.75 cde | 10.01 b |
T7 | 5.06 de | 2.38 df | 3.06 de | 0.95 df | 0.66 defg | 8.95 cdef |
T8 | 4.70 fg | 2.10 gh | 2.78 e | 0.73 fg | 0.56 efgh | 7.95 deg |
T9 | 5.17 def | 2.23 efg | 2.91 e | 0.93 ef | 0.63 defg | 8.55 def |
T10 | 5.37 cde | 2.28 efg | 3.17 cde | 0.89 efg | 0.66 defg | 8.99 bcde |
T11 | 7.37 a | 3.31 a | 4.93 a | 1.72 a | 1.05 a | 12.63 a |
T12 | 6.95 ab | 3.01 b | 4.52 a | 1.34 b | 0.93 abc | 11.06 ab |
T13 | 5.89 c | 2.48 cde | 3.53 bc | 1.05 cd | 0.70 def | 9.91 bcd |
T14 | 6.58 b | 2.71 c | 3.94 b | 1.25 bc | 0.82 bcd | 10.7 abc |
T15 | 5.93 c | 2.49 cde | 3.45 cd | 1.23 bcd | 1.01 ab | 10.8 abc |
LSD (p ≤ 0.05) | 0.64 | 0.26 | 0.45 | 0.28 | 0.19 | 2.09 |
Treatments | Micronutrients Uptake (g ha−1) by Wheat | |||||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | |||||||
Zn | Cu | Fe | Mn | Zn | Cu | Fe | Mn | |
T1 | 73.7 h | 5.39 h | 111.9 i | 65.5 f | 34.4 g | 5.09 g | 1340.4 f | 39.1 g |
T2 | 96.4 fg | 9.40 def | 158.5 efh | 115.9 bcd | 46.9 cdef | 9.82 de | 2252.1 bcde | 58.9 de |
T3 | 95.3 fg | 7.88 fg | 145.6 gh | 100.3 ce | 42.9 efg | 8.28 def | 1999.4 de | 52.7 ef |
T4 | 83.3 gh | 7.27 g | 135.5 hi | 79.3 ef | 39.2 fg | 5.99 fg | 1654.3 ef | 45.0 fg |
T5 | 97.4 f | 7.53 g | 142.6 gh | 86.8 def | 39.8 fg | 7.43 efg | 1837.7 ef | 50.4 ef |
T6 | 130.5 bc | 11.7 bc | 192.3 cd | 128.5 bc | 51.1 bcde | 12.9 bc | 2652.8 abc | 68.8 c |
T7 | 100.1 ef | 10.0 cde | 171.5 def | 113.5 bcd | 45.9 cdef | 10.2 cd | 2281.7 bcde | 59.3 de |
T8 | 94.8 fg | 8.58 efg | 146.0 gh | 100.1 cde | 43.2 def | 7.57 defg | 1896.5 def | 50.2 ef |
T9 | 105.7 ef | 9.68 de | 156.3 fgh | 103.4 cde | 44.5 def | 9.39 de | 2091.9 cde | 57.1 de |
T10 | 109.3 def | 9.65 de | 165.4 efg | 108.0 bcde | 46.5 cdef | 6.37 fg | 2133.9 cde | 57.8 de |
T11 | 173.3 a | 15.5 a | 263.8 a | 170.6 a | 67.6 a | 16.8 a | 3026.9 a | 89.6 a |
T12 | 129.3 bc | 13.5 a | 231.6 b | 134.6 b | 59.5 ab | 13.3 b | 2787.4 ab | 80.5 ab |
T13 | 114.4 cde | 10.8 bcd | 179.8 def | 107.0 bde | 48.4 bcde | 9.74 de | 2246.7 bcde | 59.7 de |
T14 | 138.4 b | 12.4 ab | 207.8 bc | 128.4 bc | 54.2 bcd | 11.3 bd | 2471.7 abcd | 71.5 bc |
T15 | 124.5 bcd | 11.6 bc | 182.2 de | 138.9 ab | 56.2 bc | 10.9 bc | 2530.0 abcd | 66.8 cd |
LSD (p ≤ 0.05) | 16.1 | 1.7 | 24.9 | 65.5 f | 16.1 | 2.7 | 633.5 | 11.1 |
Treatments | pH | EC (dS m−1) | OC (%) | N (kg ha−1) | P (kg ha−1) | K (kg ha−1) |
---|---|---|---|---|---|---|
T1 | 7.68 | 0.27 f | 0.35 f | 152 g | 27.67 i | 79.4 g |
T2 | 7.80 | 0.31 de | 0.43 cd | 190 cd | 34.87 h | 140.6 a |
T3 | 7.95 | 0.31 de | 0.39 def | 169 ef | 36.08 h | 100.5 e |
T4 | 7.75 | 0.29 ef | 0.46 b | 201 bc | 41.87 ef | 97.6 f |
T5 | 7.64 | 0.29 ef | 0.38 ef | 166 f | 44.00 cdef | 106.4 def |
T6 | 7.53 | 0.28 ef | 0.52 a | 228 a | 40.90 fg | 114.7 cd |
T7 | 7.98 | 0.33 c | 0.41 de | 179 d | 45.78 abcd | 119.3 bc |
T8 | 7.64 | 0.36 abc | 0.49 ab | 216 ab | 47.43 abc | 107.8 de |
T9 | 7.65 | 0.27 f | 0.42 cde | 184 de | 34.73 h | 103.2 ef |
T10 | 7.68 | 0.30 ef | 0.38 ef | 166 f | 45.42 bcde | 118.0 b |
T11 | 7.53 | 0.39 a | 0.51 a | 225 a | 48.10 ab | 143.0 a |
T12 | 7.78 | 0.33 c | 0.46 bc | 201 bc | 42.94 def | 103.9 ef |
T13 | 7.62 | 0.35 bc | 0.49 ab | 216 ab | 49.08 a | 126.3 b |
T14 | 7.59 | 0.31 de | 0.44 c | 193 c | 38.09 gh | 102.7 ef |
T15 | 7.60 | 0.37 ab | 0.39 def | 171 ef | 42.00 ef | 101.3 ef |
LSD (p ≤ 0.05) | NS | 0.03 | 0.04 | 15 | 3.58 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Gupta, R.K.; Verma, V.; Kaur, M.; Behera, S.K.; Singh, P. Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India. Agriculture 2023, 13, 556. https://doi.org/10.3390/agriculture13030556
Dhaliwal SS, Sharma V, Shukla AK, Gupta RK, Verma V, Kaur M, Behera SK, Singh P. Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India. Agriculture. 2023; 13(3):556. https://doi.org/10.3390/agriculture13030556
Chicago/Turabian StyleDhaliwal, Salwinder Singh, Vivek Sharma, Arvind Kumar Shukla, Rajeev Kumar Gupta, Vibha Verma, Manmeet Kaur, Sanjib Kumar Behera, and Prabhjot Singh. 2023. "Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India" Agriculture 13, no. 3: 556. https://doi.org/10.3390/agriculture13030556
APA StyleDhaliwal, S. S., Sharma, V., Shukla, A. K., Gupta, R. K., Verma, V., Kaur, M., Behera, S. K., & Singh, P. (2023). Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India. Agriculture, 13(3), 556. https://doi.org/10.3390/agriculture13030556