Parameter Calibration of Cabbages (Brassica oleracea L.) Based on the Discrete Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Creation
2.1.1. Cabbages and Their Intrinsic Parameters
2.1.2. DEM Simulation Model of Cabbage
2.1.3. Selection of Contact Model
2.2. Contact Parameters between Cabbage and Materials
2.2.1. Coefficient of Restitution
2.2.2. Static Friction Coefficient
2.2.3. Rolling Friction Coefficient
2.3. Contact Parameters between Cabbages
2.3.1. Coefficient of Restitution
2.3.2. Friction Coefficient between Cabbages
2.4. Verification Test
3. Results and Discussion
3.1. Calibration of Contact Parameters between Cabbages and Materials
3.1.1. Coefficient of Restitution
3.1.2. Static Friction Coefficient
3.1.3. Rolling Friction Coefficient
3.2. Calibration of Contact Parameters between Cabbages
3.2.1. Coefficient of Restitution
3.2.2. Cabbage Accumulation Angle
3.2.3. Test of the Steepest Ascent
3.2.4. Analysis of Calibration Results of Contact Parameters between Cabbages
3.3. Analysis of the Results of Simulation Parameters Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Du, D.D.; Hu, J.B.; Zhu, J.X. Vegetable Mechanized Harvesting Technology and Its Development. Trans. Chin. Soc. Agric. Mach. 2014, 45, 81–87. (In Chinese) [Google Scholar]
- Song, K.S.; Hwang, H.; Hong, J.T. Automatic Cabbage Feeding, Piling, and Unloading System for Tractor Implemented Chinese Cabbage Harvester. IFAC Proc. Vol. 2000, 33, 259–263. [Google Scholar] [CrossRef]
- Cui, G.P.; Wang, J.Z.; Wen, S.T.; Wei, Y.Z.; Cui, Y.J.; Niu, Z.J. Design and Test of Monomer Sorting and Orientational Conveying Device for Postharvest Cabbage. Trans. Chin. Soc. Agric. Mach. 2021, 52, 351–360. (In Chinese) [Google Scholar]
- El Didamony, M.I.; El Shal, A.M. Fabrication and Evaluation of a Cabbage Harvester Prototype. Agriculture 2020, 10, 631. [Google Scholar] [CrossRef]
- Zhang, J.F.; Cao, G.Q.; Jin, Y.; Tong, W.Y.; Zhao, Y.; Song, Z.Y. Parameter Optimization and Testing of a Self-Propelled Combine Cabbage Harvester. Agriculture 2022, 12, 1610. [Google Scholar] [CrossRef]
- Li, T.H.; Meng, Z.W.; Zheng, C.L.; Hou, J.L.; Shi, G.Y.; Xu, R. Research status and development of cabbage harvester. J. Chin. Agric. Mech. 2019, 40, 40–46. (In Chinese) [Google Scholar]
- Wang, S.; Yu, Z.; Aorigele; Zhang, W. Study on the modeling method of sunflower seed particles based on the discrete element method. Comput. Electron. Agric. 2022, 198, 107012. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, S.; Pan, H.B.; Zheng, Z.Q.; Huang, Y.X.; Zhu, R.X. Effect of soil particle size on soil-subsoiler interactions using the discrete element method simulations. Biosyst. Eng. 2019, 182, 138–150. [Google Scholar] [CrossRef]
- Coetzee, C.J. Review: Calibration of the discrete element method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Martin, C.L.; Bouvard, D.; Shima, S. Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids 2003, 51, 667–693. [Google Scholar] [CrossRef]
- Wang, X.M.; Yu, J.Q.; Lv, F.Y.; Wang, Y.; Fu, H. A multi-sphere based modelling method for maize grain assemblies. Adv. Powder Technol. 2017, 28, 584–595. [Google Scholar] [CrossRef]
- Liu, W.Z.; He, J.; Li, H.W.; Li, X.Q.; Zheng, K.; Wei, Z.C. Calibration of Simulation Parameters for Potato Minituber Based on EDEM. Trans. Chin. Soc. Agric. Mach. 2018, 49, 125–135+142. (In Chinese) [Google Scholar]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.H.; Wang, X.C. Critical Review of Applications of Discrete Element Method in Agricultural Engineering. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. (In Chinese) [Google Scholar]
- Wu, Z.Y.; Wang, X.S.; Liu, D.W.; Xie, F.P.; Ashwehmbom, L.G.; Zhang, Z.Z.; Tang, Q.J. Calibration of discrete element parameters and experimental verification for modelling subsurface soils. Biosyst. Eng. 2021, 212, 215–227. [Google Scholar] [CrossRef]
- Wang, X.L.; Hu, H.; Wang, Q.Q.J.; Li, H.W.; He, J.; Chen, W.Z. Calibration Method of Soil Contact Characteristic Parameters Based on DEM Theory. Trans. Chin. Soc. Agric. Mach. 2017, 48, 78–85. (In Chinese) [Google Scholar]
- Qiu, Y.Q.; Guo, Z.J.; Jin, X.; Zhang, P.G.; Si, S.J.; Guo, F.G. Calibration and Verification Test of Cinnamon Soil Simulation Parameters Based on Discrete Element Method. Agriculture 2022, 12, 1082. [Google Scholar] [CrossRef]
- Zhang, S.W.; Zhang, R.Y.; Chen, T.Y.; Fu, J.; Yuan, H.F. Calibration of Simulation Parameters of Mung Bean Seeds Using Discrete Element Method and Verification of Seed-metering Test. Trans. Chin. Soc. Agric. Mach. 2022, 53, 71–79. (In Chinese) [Google Scholar]
- Nguyen, T.X.; Le, L.M.; Nguyen, T.C.; Nguyen, N.T.H.; Le, T.T.; Pham, B.T.; Le, V.M.; Ly, H.B. Characterization of soybeans and calibration of their DEM input parameters. Part. Sci. Technol. 2020, 39, 530–548. [Google Scholar] [CrossRef]
- Yu, Q.X.; Liu, Y.; Chen, X.B.; Sun, K.; Lai, Q.H. Calibration and Experiment of Simulation Parameters for Panax notoginseng Seeds Based on DEM. Trans. Chin. Soc. Agric. Mach. 2020, 51, 123–132. (In Chinese) [Google Scholar]
- Chen, Z.P.; Wassgren, C.; Veikle, E.; Ambrose, K. Determination of material and interaction properties of maize and wheat kernels for DEM simulation. Biosyst. Eng. 2020, 195, 208–226. [Google Scholar] [CrossRef]
- Fang, M.; Yu, Z.H.; Zhang, W.J.; Cao, J.; Liu, W.H. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology. Powder Technol. 2022, 396, 731–742. [Google Scholar] [CrossRef]
- Wang, Q.R.; Mao, H.P.; Li, Q.L. Simulation of Vibration Response of Flexible Crop Stem Based on Discrete Element Method. Trans. Chin. Soc. Agric. Mach. 2020, 51, 131–137. (In Chinese) [Google Scholar]
- Adajar, J.B.; Alfaro, M.; Chen, Y.; Zeng, Z.W. Calibration of discrete element parameters of crop residues and their interfaces with soil. Comput. Electron. Agric. 2021, 188, 106349. [Google Scholar] [CrossRef]
- Wen, X.Y.; Yuan, H.F.; Wang, G.; Jia, H.L. Calibration Method of Friction Coefficient of Granular Fertilizer by Discrete Element Simulation. Trans. Chin. Soc. Agric. Mach. 2020, 51, 115–122. (In Chinese) [Google Scholar]
- Adilet, S.; Zhao, J.; Sayakhat, N.; Chen, J.; Nikolay, Z.; Bu, L.; Sugirbayeva, Z.; Hu, G.; Marat, M.; Wang, Z. Calibration Strategy to Determine the Interaction Properties of Fertilizer Particles Using Two Laboratory Tests and DEM. Agriculture 2021, 11, 592. [Google Scholar] [CrossRef]
- Scheffler, O.C.; Coetzee, C.J.; Opara, U.L. A discrete element model (DEM) for predicting apple damage during handling. Biosyst. Eng. 2018, 172, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.J.; Long, S.F.; Li, H.; Jia, Y.L.; Ma, Z.K.; Zhao, J.G. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2019, 35, 34–42. (In Chinese) [Google Scholar]
- Fan, G.J.; Wang, S.Y.; Shi, W.J.; Gong, Z.F.; Gao, M. Simulation Parameter Calibration and Test of Typical Pear Varieties Based on Discrete Element Method. Agronomy 2022, 12, 1720. [Google Scholar] [CrossRef]
- Mu, G.Z.; Qi, X.T.; Zhang, W.Z.; Lü, Z.Q.; Zhang, T.T.; Wang, S.W. Parameter Measurement and Calibration in Discrete Element Simulation of Broken Sweet Potato Seedlings. J. Chin. Agric. Mech. 2021, 42, 72–79. (In Chinese) [Google Scholar] [CrossRef]
- Bai, S.H.; Yuan, Y.W.; Niu, K.; Zhou, L.M.; Zhao, B.; Wei, L.G.; Liu, L.J.; Xiong, S.; Shi, Z.L.; Ma, Y.H.; et al. Simulation Parameter Calibration and Experimental Study of a Discrete Element Model of Cotton Precision Seed Metering. Agriculture 2022, 12, 870. [Google Scholar] [CrossRef]
- Wu, M.C.; Cong, J.L.; Yan, Q.; Zhu, T.; Peng, X.Y.; Wang, Y.S. Calibration and experiments for discrete element simulation parameters of peanut seed particles. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2020, 36, 30–38. [Google Scholar]
- Kafashan, J.; Wiacek, J.; Ramon, H.; Mouazen, A.M. Modelling and simulation of fruit drop tests by discrete element method. Biosyst. Eng. 2021, 212, 228–240. [Google Scholar] [CrossRef]
- Niu, K.; Yuan, Y.W.; Luo, M.; Liu, Y.C.; Lü, C.X.; Fang, X.F. Design and experiment of potato metering device with double-deck seed tank. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2016, 32, 32–39. (In Chinese) [Google Scholar]
- Shen, Y. Simulation Analysis and Experimental Study on Mechanical Properties of Plywood and Solid Wood Materials. Master’s Thesis, Hunan University of Technology, Zhuzhou, China, 2019. (In Chinese). [Google Scholar]
- Shi, L.R.; Ma, Z.T.; Zhao, W.Y.; Yang, X.P.; Sun, B.G.; Zhang, J.P. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2019, 35, 25–33. (In Chinese) [Google Scholar]
- González-Montellano, C.; Fuentes, J.M.; Ayuga-Téllez, E.; Ayuga, F. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. J. Food Eng. 2012, 111, 553–562. [Google Scholar] [CrossRef]
- Yu, C.C.; Duan, H.B.; Cai, X.K.; Xu, T.; Yao, F.H.; Chen, Z.H.; Yan, F.Y. Discrete element simulation parameters-based measurement of materials for potato minituber. J. Huazhong Agric. Univ. 2021, 40, 210–217. (In Chinese) [Google Scholar]
- Torres-Serra, J.; Rodríguez-Ferran, A.; Romero, E. Classification of granular materials via flowability-based clustering with application to bulk feeding. Powder Technol. 2021, 378, 288–302. [Google Scholar] [CrossRef]
- Zhang, R.; Han, D.L.; Ji, Q.L.; He, Y.; Li, J.Q. Calibration Methods of Sandy Soil Parameters in Simulation of Discrete Element Method. J. Chin. Agric. Mech. 2017, 48, 49–56. (In Chinese) [Google Scholar]
- Shi, L.R.; Sun, W.; Zhao, W.Y.; Yang, X.P.; Feng, B. Parameter determination and validation of discrete element model of seed potato mechanical seeding. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2018, 34, 35–42. (In Chinese) [Google Scholar]
Parameter | Value |
---|---|
Transverse diameter, D/mm | 160.31 ± 17.53 |
Longitudinal height, H/mm | 155.64 ± 11.28 |
Sphericity | 0.95 ± 0.05 |
Mass/g | 958.36 ± 211.44 |
Density/(kg·m−3) | 850 |
Moisture content/% | 85.33 ± 8.25 |
Poisson’s ratio | 0.32 |
Elastic modulus/MPa | 2.87 |
Shear modulus/MPa | 1.09 |
Material | Parameter | ||
---|---|---|---|
Poisson’s Ratio | Shear Modulus/MPa | Density/(kg·m−3) | |
Q235 Steel | 0.28 | 8.20 × 104 | 7850.00 |
PVC | 0.47 | 2.00 | 1282.00 |
EVA | 0.30 | 0.46 | 79.09 |
Wood | 0.24 | 0.38 × 102 | 578.32 |
Code | Test Factors | ||
---|---|---|---|
e | µs | µr | |
−1.682 | 1 | 1 | 1 |
−1 | 2 | 2 | 2 |
0 | 3 | 3 | 3 |
1 | 4 | 4 | 4 |
1.682 | 5 | 5 | 5 |
Material | Maximum Rebound Height/mm | Coefficient of Restitution Value |
---|---|---|
Q235 Steel | 93.80 | 0.43 |
PVC | 100.10 | 0.45 |
EVA | 134.82 | 0.52 |
Wood | 82.21 | 0.41 |
Material | Inclination Angle/° | Static Friction Coefficient |
---|---|---|
Q235 Steel | 35.31 | 0.71 |
PVC | 20.24 | 0.37 |
EVA | 37.17 | 0.76 |
Wood | 33.82 | 0.67 |
Material | Rolling Distance/mm | Rolling Friction Coefficient |
---|---|---|
Q235 Steel | 682.6 | 0.0481 |
PVC | 673.8 | 0.0486 |
EVA | 653.8 | 0.0496 |
Wood | 586.9 | 0.0536 |
Contact Material | Maximum Rebound Height/mm | Coefficient of Restitution Value |
---|---|---|
Cabbage–Cabbage | 71.45–116.32 | 0.38–0.48 |
Number | Test Factors | Test Results | |||
---|---|---|---|---|---|
e | µs | µr | 𝜃′/(°) | 𝜎/% | |
1 | 0.38 | 0.1 | 0.01 | 13.39 | 30.84 |
2 | 0.40 | 0.2 | 0.02 | 15.30 | 14.51 |
3 | 0.42 | 0.3 | 0.03 | 17.08 | 2.58 |
4 | 0.44 | 0.4 | 0.04 | 20.62 | 15.03 |
5 | 0.46 | 0.5 | 0.05 | 24.81 | 41.61 |
6 | 0.48 | 0.6 | 0.06 | 28.69 | 63.24 |
Level | Test Factors | ||
---|---|---|---|
e | µs | µr | |
−1.682 | 0.386 | 0.132 | 0.013 |
−1 | 0.400 | 0.200 | 0.020 |
0 | 0.420 | 0.300 | 0.030 |
1 | 0.440 | 0.400 | 0.040 |
1.682 | 0.454 | 0.468 | 0.047 |
Number | Parameter | Y(𝜎)/% | ||
---|---|---|---|---|
A(e) | B(µs) | C(µr) | ||
1 | 0 | 0 | 1.682 | 1.82 |
2 | 0 | 0 | 0 | 0.88 |
3 | 1.682 | 0 | 0 | 2.66 |
4 | 0 | 1.682 | 0 | 3.55 |
5 | −1.682 | 0 | 0 | 2.54 |
6 | −1 | −1 | −1 | 9.18 |
7 | −1 | −1 | 1 | 4.34 |
8 | 0 | 0 | 0 | 1.96 |
9 | 0 | −1.682 | 0 | 9.14 |
10 | 1 | −1 | 1 | 5.71 |
11 | 1 | 1 | −1 | 2.71 |
12 | 0 | 0 | 0 | 1.67 |
13 | 0 | 0 | 0 | 1.86 |
14 | 1 | −1 | −1 | 7.71 |
15 | −1 | 1 | −1 | 2.27 |
16 | 0 | 0 | −1.682 | 4.24 |
17 | 1 | 1 | 1 | 3.39 |
18 | 0 | 0 | 0 | 1.22 |
19 | 0 | 0 | 0 | 0.74 |
20 | −1 | 1 | 1 | 3.27 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 118.38 | 9 | 13.15 | 30.89 | <0.0001 ** |
A | 0.032 | 1 | 0.032 | 0.075 | 0.7893 |
B | 44.68 | 1 | 44.68 | 104.92 | <0.0001 ** |
C | 6.24 | 1 | 6.24 | 14.65 | 0.0033 ** |
AB | 0.054 | 1 | 0.054 | 0.13 | 0.7281 |
AC | 0.79 | 1 | 0.79 | 1.86 | 0.2021 |
BC | 9.07 | 1 | 9.07 | 21.31 | 0.0010 ** |
A2 | 4.69 | 1 | 4.69 | 11.01 | 0.0078 ** |
B2 | 51.72 | 1 | 51.72 | 121.47 | <0.0001 ** |
C2 | 7.52 | 1 | 7.52 | 17.66 | 0.0018 ** |
Residual | 4.26 | 10 | 0.43 | ||
Lack of Fit | 2.92 | 5 | 0.58 | 2.19 | 0.2052 |
Pure error | 1.34 | 5 | 0.27 | ||
Sum | 122.64 | 19 |
Subject | Measured Value/° | Simulated Value/° | Error/% |
---|---|---|---|
Cabbage | 17.56 | 17.85 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Wang, L.; Wang, X.; Shi, Y.; Yang, Z. Parameter Calibration of Cabbages (Brassica oleracea L.) Based on the Discrete Element Method. Agriculture 2023, 13, 555. https://doi.org/10.3390/agriculture13030555
Zheng J, Wang L, Wang X, Shi Y, Yang Z. Parameter Calibration of Cabbages (Brassica oleracea L.) Based on the Discrete Element Method. Agriculture. 2023; 13(3):555. https://doi.org/10.3390/agriculture13030555
Chicago/Turabian StyleZheng, Jinming, Lin Wang, Xiaochan Wang, Yinyan Shi, and Zhenyu Yang. 2023. "Parameter Calibration of Cabbages (Brassica oleracea L.) Based on the Discrete Element Method" Agriculture 13, no. 3: 555. https://doi.org/10.3390/agriculture13030555
APA StyleZheng, J., Wang, L., Wang, X., Shi, Y., & Yang, Z. (2023). Parameter Calibration of Cabbages (Brassica oleracea L.) Based on the Discrete Element Method. Agriculture, 13(3), 555. https://doi.org/10.3390/agriculture13030555