Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site Location and Soil Characteristics
2.2. Field Experimental Method
2.3. Evaluation Index of Field Test Research
2.3.1. Seedbed Backfill
2.3.2. Soil Fragmentation
2.4. Simulation Analysis Method
2.5. Evaluation Index of Simulation Research
2.5.1. Soil Side Throwing
2.5.2. Soil Particle Backfill
3. Results
3.1. Analysis of the Interaction between Rotary Blade and Soil
3.2. Soil Side Throwing
3.3. Seedbed Backfill
3.4. Soil Fragmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yanshan, Y.; Qishuo, D.; Tingfeng, H.; Cuihua, S.; Feng, W. Research of the tillage mechanism for wheat rotary strip-till planter. J. Chin. Agric. Mech. 2021, 6, 10–16. (In Chinese) [Google Scholar]
- Wei, G.; Jian, S.C.; Fang, H.M.; Peng, Q.J.; Niu, M.M. Current situation prospect of conservation tillage technology in dry-farming areas of North China. J. Chin. Agric. Mech. 2019, 3, 7–10. (In Chinese) [Google Scholar]
- Yang, Y.; Hu, Z.; Gu, F.; Wang, J.; Ding, Q. Effects of Tillage Methods on Crop Root Growth Trend Based on 3D Modeling Technology. Agriculture 2022, 12, 1411. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Tillage Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; He, J.; Wang, Q.; Lu, C.; Yang, H. Optimization Design of a Pneumatic Wheat-Shooting Device Based on Numerical Simulation and Field Test in Rice–Wheat Rotation Areas. Agriculture 2022, 12, 56. [Google Scholar] [CrossRef]
- Huo, L.; Liu, J.; Abbas, A.; Ding, Q.; Wang, H.; Zhou, Z.; Meng, L.; Bai, Z. Effects of dry bulk density and water content on compressive characteristics of wet clayey paddy soil. Agron. J. 2022, 114, 2598–2607. [Google Scholar] [CrossRef]
- Jianjun, H.; Haijie, Y.; Jianguo, Z. Design and test of wedge drag reduction rotary blade. Trans. CSAE 2019, 8, 55–64. (In Chinese) [Google Scholar]
- Matin, M.A.; Hossain, M.I.; Gathala, M.K.; Timsina, J.; Krupnik, T.J. Optimal design and setting of rotary strip-tiller blades to intensify dry season cropping in Asian wet clay soil conditions. Soil Tillage Res. 2020, 207, 104854. [Google Scholar] [CrossRef]
- Yang, Y.; Fielke, J.; Ding, Q.; Re, H. Field experimental study on optimal design of the rotary strip-till tools applied in rice-wheat rotation cropping system. Int. J. Agric. Biol. Eng. 2018, 11, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Chong, Z.; Xuhui, F.; Mingsen, L.; Guang, L.; Chunkai, Z.; Wenliang, S. Simulation Analysis and Experiment of Soil Disturbance by Chisel Plow Based on EDEM. Trans. Chin. Soc. Agric. Eng. 2022, 2, 52–59. (In Chinese) [Google Scholar]
- Hunt, S.P.; Meyers, A.G.; Louchnikov, V. Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method. Comput. Geotech. 2003, 7, 611–621. [Google Scholar] [CrossRef]
- Djordjevic, N. Discrete element modelling of the influence of lifters on power draw of tumbling mills. Miner. Eng. 2003, 16, 331–336. [Google Scholar] [CrossRef]
- Wang, C.; Tannant, D.D.; Lilly, P.A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int. J. Rock Mech. Min. Sci. 2003, 3, 415–424. [Google Scholar] [CrossRef]
- Maohua, X.; Kaixin, W.; Wang, Y.; Weichen, W.; Feng, J. Design and Experiment of Bionic Rotary Blade Based on Claw Toe of Gryllotalpa orientalis Burmeister. Trans. Chin. Soc. Agric. Eng. 2021, 2, 55–63. (In Chinese) [Google Scholar]
- Huimin, F.; Changying, J.; Tagar, A.A.; Qingyi, Z.; Jun, G. Simulation analysis of straw movement in straw-soil-rotary blade system. Trans. Chin. Soc. Agric. Eng. 2016, 1, 60–67. (In Chinese) [Google Scholar]
- Huimin, F.; Changying, J.; Tagar, A.; Qingyi, Z.; Jun, G.; Arslan, C. Analysis of soil dynamic behavior during rotary tillage based on distinct element method. Trans. Chin. Soc. Agric. Eng. 2016, 3, 22–28. (In Chinese) [Google Scholar]
- Matin, M.A.; Fielke, J.M.; Desbiolles, J. Furrow parameters in rotary strip-tillage: Effect of blade geometry and rotation speed. Biosyst. Eng. 2014, 118, 7–15. [Google Scholar] [CrossRef]
- Dexter, A.R.; Birkas, M. Prediction of the soil structures produced by tillage. Soil Tillage Res. 2004, 2, 233–238. [Google Scholar] [CrossRef]
- Arvidsson, J.; Hillerström, O. Specific draught, soil fragmentation and straw incorporation for different tine and share types. Soil Tillage Res. 2010, 1, 154–160. [Google Scholar] [CrossRef]
- Caruso, T.; Barto, E.K.; Siddiky, M.R.K. Are power laws that estimate fractal dimension a good descriptor of soil structure and its link to soil biological properties? Soil Biol. Biochem. 2011, 2, 359–366. [Google Scholar] [CrossRef]
- Zheng, K.; He, J.; Li, H. XIP Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method. Trans. Chin. Soc. Agric. Eng. 2016, 9, 62–72. (In Chinese) [Google Scholar]
- Deng, J.; Hu, J.; Li, Q.; Yu, T. Simulation and experimental study on the subsoiler based on EDEM discrete element method. J. Chin. Agric. Mech. 2016, 4, 14–18. (In Chinese) [Google Scholar]
- Solhjou, A.; Desbiolles, J.; Fielke, J.M. Soil translocation by narrow openers with various blade face geometries. Biosyst. Eng. 2013, 3, 259–266. [Google Scholar] [CrossRef]
- Matin, M.A.; Fielke, J.M.; Desbiolles, J.M.A. Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade. Biosyst. Eng. 2015, 129, 329–340. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, S.H.; Park, W.Y. Strip tillage characteristics of rotary tiller blades for use in a dryland direct rice seeder. Soil Tillage Res. 2003, 1, 25–32. [Google Scholar] [CrossRef]
- Kheiralla, A.F.; Yahya, A.; Zohadie, M. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Tillage Res. 2004, 1, 21–34. [Google Scholar] [CrossRef]
- Asl, J.H.; Singh, S. Optimization and evaluation of rotary tiller blades: Computer solution of mathematical relations. Soil Tillage Res. 2009, 1, 1–7. [Google Scholar] [CrossRef]
- Chertkiattipol, S.; Niyamapa, T. Variations of Torque and Specific Tilling Energy for Different Rotary Blades. Int. Agric. Eng. J. 2011, 3, 1–14. [Google Scholar]
- Upadhyay, G.; Raheman, H. Comparative assessment of energy requirement and tillage effectiveness of combined (active-passive) and conventional offset disc harrows. Biosyst. Eng. 2020, 198, 266–279. [Google Scholar] [CrossRef]
Depth (cm) | Water Content (%) | Dry Bulk Density (kg m−3) | Cohesion (kPa) | Internal Friction Angle (°) | Cone Index (kPa) | Plastic Limit (%) | Field Capacity (%) |
---|---|---|---|---|---|---|---|
0–10 | 31.8 | 0.125 | 30.91 | 13.1 | 587 | 25.2 | 40.6 |
Parameter | Value |
---|---|
Length, width and height of soil model(mm) | 1000 × 800 × 80 |
Soil density (Kg·m−3) | 1280 |
Poisson’s ratio of soil | 0.38 |
Shear modulus of soil (Pa) | 6 × 107 |
Soil–soil recovery coefficient | 0.6 |
Soil–soil static friction coefficient | 0.6 |
Soil–soil dynamic friction coefficient | 0.5 |
Soil particle radius (mm) | 5 |
Soil bond stiffness (N·m−3) | 1 × 106 |
Critical bond stress of the soil (Pa) | 3 × 105 |
Soil bonding radius (mm) | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Hu, Z.; Gu, F.; Ding, Q. Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades. Agriculture 2023, 13, 632. https://doi.org/10.3390/agriculture13030632
Yang Y, Hu Z, Gu F, Ding Q. Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades. Agriculture. 2023; 13(3):632. https://doi.org/10.3390/agriculture13030632
Chicago/Turabian StyleYang, Yanshan, Zhichao Hu, Fengwei Gu, and Qishuo Ding. 2023. "Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades" Agriculture 13, no. 3: 632. https://doi.org/10.3390/agriculture13030632
APA StyleYang, Y., Hu, Z., Gu, F., & Ding, Q. (2023). Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades. Agriculture, 13(3), 632. https://doi.org/10.3390/agriculture13030632