Calibration Parameter of Soil Discrete Element Based on Area Difference Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Cross-Sectional Contour Data of the Furrow
2.1.1. Test Conditions
2.1.2. Ridge and Furrow Opening Test
2.1.3. Data Processing and Analysis
2.2. Discrete Element Simulation Modeling
2.2.1. Contact Model Selection
2.2.2. Determination of Soil–Steel Friction Factor
- (1)
- Determination of Soil–Steel Static Friction Factor.
- (2)
- Determination of Soil–Steel Rolling Friction Factor.
2.2.3. Calibration Parameters Selection
2.2.4. Establishment of the Simulation Test Model
3. Results and Discussion
3.1. Design of Calibration Experiment
3.2. Simulation Results and Analysis
3.2.1. Regression Modeling and Significance Analysis
3.2.2. The Influence Law of Interaction Factors on Area Difference
3.2.3. Optimal Parameter Groups and Simulation Test Verification
3.3. Optimal Parameter Groups and Simulation Test Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, H.; Ji, Z.; Farman, A.C.; Guo, J.; Zhang, Q.; Chaudhry, A. Analysis of Soil Dynamic Behavior during Rotary Tillage Based on Distinct Element Method. Trans. Chin. Soc. Agric. Mach. 2016, 47, 22–28. [Google Scholar]
- Yu, J.Q.; Fu, H.; Li, H.; Shen, Y.F. Application of discrete element method to research and design of working parts of agricultural machines. Trans. Chin. Soc. Agric. Eng. 2005, 21, 1–6. [Google Scholar]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.H.; Wang, X.C. Critical Review of Applications of Discrete Element Method in Agricultural Engineering. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar]
- Zhao, S.H.; Wang, J.Y.; Chen, J.Z.; Yang, Y.Q.; Tan, H.W. Design and Experiment of Fitting Curve Subsoiler of Conservation Tillage. Trans. Chin. Soc. Agric. Mach. 2018, 49, 82–92. [Google Scholar]
- Wang, J.W.; Tang, H.; Wang, J.F.; Huang, H.N.; Lin, N.N.; Zhao, Y. Numerical Analysis and Performance Optimization Ex-periment on Hanging Unilateral Ridger for Paddy Field. Trans. Chin. Soc. Agric. Mach. 2017, 48, 72–80. [Google Scholar]
- Jia, H.L.; Wang, W.P.; Chen, Z.; Zheng, T.Z.; Zhang, P.; Zhuang, J. Research Status and Prospect of Soil-engaging Components Optimization for Agricultural Machinery. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–13. [Google Scholar]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Jensen, T.A.; Antille, D.L.; Desbiolles, J.M.A. Determination of discrete element model pa-rameters for a cohesive soil and validation through narrow point opener performance analysis. Soil Tillage Res. 2021, 213, 105123. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, Q.K.; Huang, Y.X.; Ji, J.T. An efficient method for determining dem parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models. Biosyst. Eng. 2022, 215, 283–294. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. 3d dem tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil. Soil Tillage Res. 2014, 144, 220–227. [Google Scholar] [CrossRef]
- Coetzee, C.J. Calibration of the discrete element method and the effect of particle shape. Powder Technol. 2016, 297, 50–70. [Google Scholar] [CrossRef]
- Xiang, W.; Wu, M.L.; Lu, J.N.; Quan, W.; Ma, L.; Liu, J.J. Calibration of simulation physical parameters of clay loam based on soil accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123. [Google Scholar]
- Wang, X.L.; Hu, H.; Wang, Q.J.; Li, H.W.; He, J.; Chen, W.Z. Calibration Method of Soil Contact Characteristic Parameters Based on DEM Theory. Trans. Chin. Soc. Agric. Mach. 2017, 48, 78–85. [Google Scholar]
- Li, J.W.; Tong, J.; Hu, B.; Wang, H.B.; Mao, C.Y.; Ma, Y.H. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China. Trans. CSAE 2019, 35, 130–140. [Google Scholar]
- Sun, J.B.; Liu, Q.; Yang, F.Z.; Liu, Z.J.; Wang, Z. Calibration of Discrete Element Simulation Parameters of Sloping Soil on the Loess Plateau and Its Interaction with Rotary Tillage Components. Trans. Chin. Soc. Agric. Mach. 2022, 53, 11. [Google Scholar]
- Song, S.L.; Tang, Z.H.; Zheng, X.; Liu, J.B.; Meng, X.J.; Liang, Y.C. Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 63–70. [Google Scholar]
- Wu, K.N.; Zhao, R. Soil Texture Classification and Its Application in China. Acta Pedol. Sinica. 2019, 56, 227–241. [Google Scholar]
- Yang, W.W.; Fang, L.Y.; Luo, X.W.; Li, H.; Ye, Y.Q.; Liang, Z.H. Experimental study of the effects of discharge port parameters on the fertilizing performance for fertilizer distribution apparatus with screw. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–8. [Google Scholar]
- DEM Solutions. EDEM 2.6 Theory Reference Guide; DEM Solutions: Edinburgh, UK, 2014. [Google Scholar]
- Li, D.P. Discrete Element Analysis and Performance Test of Pneumatic Precision Metering Device for Quinoa. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2020. [Google Scholar]
- Yan, H. A New Kind of Method for the Optimizated Design of Combination Inner-Cell Corn Precision Seed Metering Device. Doctoral’s Thesis, Jilin University, Changchun, China, 2012. [Google Scholar]
- Wang, L.J.; Peng, B.; Song, H.Q. Cleaning of Maize Mixture Based on Polyurethane Rubber Sieve. Trans. Chin. Soc. Agric. Mach. 2018, 49, 90–96. [Google Scholar]
- Asaf, Z.; Rubinstein, D.; Shmulevich, I. Determination of discrete element model parameters required for soil tillage. Soil Tillage Res. 2007, 92, 227–242. [Google Scholar] [CrossRef]
- Wang, J.L. Optimum Design and Experimental of Rice Straw Deep-buried Blade Roller Assembly Based on Discrete Element Method. Master’s Thesis, Northeast Agricultural University, HarBin, China, 2019. [Google Scholar]
- He, Y.M. Soil Dynamic Behavior of Planting Pore-forming Process Based on Discrete Element Method. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2018. [Google Scholar]
- Wu, T.; Huang, W.F.; Chen, X.S.; Ma, X.; Han, Z.Q.; Pan, T. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. J. S. Ch. Agr. Univ. 2017, 38, 93–98. [Google Scholar]
- Ding, Q.S.; Ren, J.; Belal, E.A.; Zhao, J.K.; Ge, S.Y.; Li, Y. DEM Analysis of Subsoiling Process in Wet Clayey Paddy Soil. Trans. Chin. Soc. Agric. Mach. 2017, 48, 38–48. [Google Scholar]
- Zeng, D.C. Mechanical Soil Dynamics; Beijing Science and Technology Press: Beijing, China, 1995; pp. 87–92. [Google Scholar]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 2014, 121, 105–117. [Google Scholar] [CrossRef]
- He, Y.M.; Xiang, W.; Wu, M.L.; Quan, W.; Chen, C.P. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap. J. Hunan Agric. Univ. (Nat. Sci. ) 2018, 44, 216–220. [Google Scholar]
- Fang, H.M.; Ji, C.Y.; Ahmed, A.T.; Zhang, Q.Y.; Guo, J. Simulation Analysis of Straw Movement in Straw-Soil-Rotary Blade System. Trans. Chin. Soc. Agric. Mach. 2016, 47, 60–67. [Google Scholar]
- Mathews, J.H.; Fink, K.D. Numerical Methods (MATLAB Edition); Electronic Industry Press: Beijing, China, 2005; pp. 195–215. [Google Scholar]
Serial Number | 65Mn Steel Plate Inclination Angle/(°) | Static Friction Factor | Mean Value |
---|---|---|---|
1 | 34.2° | 0.68 | 0.71 |
2 | 35.3° | 0.71 | |
3 | 36.4° | 0.74 |
Serial Number | 65Mn Steel Plate Inclination Angle/(°) | Rolling Friction Factor | Mean Value |
---|---|---|---|
1 | 5.6° | 0.098 | 0.097 |
2 | 5.2° | 0.091 | |
3 | 5.8° | 0.102 |
Experimental Factors | Low Level | Intermediate Level | High Level |
---|---|---|---|
Soil–soil recovery coefficient | 0.3 | 0.45 | 0.6 |
Soil–soil static friction factor | 0.2 | 0.4 | 0.6 |
Soil–soil rolling friction factor | 0.05 | 0.175 | 0.3 |
Soil JKR surface energy (J/) | 5 | 7 | 9 |
Serial Number | Soil–Soil Recovery Coefficient | Soil–Soil Static Friction Factor | Soil–Soil Rolling Friction Factor | Soil JKR Surface Energy/(J/m−2) | Area Difference/(dm2) |
---|---|---|---|---|---|
1 | 0.30 | 0.20 | 0.17 | 7.00 | 2.00 |
2 | 0.60 | 0.20 | 0.17 | 7.00 | 0.56 |
3 | 0.30 | 0.60 | 0.17 | 7.00 | 2.44 |
4 | 0.60 | 0.60 | 0.17 | 7.00 | 1.17 |
5 | 0.45 | 0.40 | 0.05 | 5.00 | 0.89 |
6 | 0.45 | 0.40 | 0.30 | 5.00 | 1.72 |
7 | 0.45 | 0.40 | 0.05 | 9.00 | 0.35 |
8 | 0.45 | 0.40 | 0.30 | 9.00 | 0.87 |
9 | 0.30 | 0.40 | 0.17 | 5.00 | 2.12 |
10 | 0.60 | 0.40 | 0.17 | 5.00 | 1.07 |
11 | 0.30 | 0.40 | 0.17 | 9.00 | 2.13 |
12 | 0.60 | 0.40 | 0.17 | 9.00 | 0.80 |
13 | 0.45 | 0.20 | 0.05 | 7.00 | 0.20 |
14 | 0.45 | 0.60 | 0.05 | 7.00 | 0.70 |
15 | 0.45 | 0.20 | 0.30 | 7.00 | 0.99 |
16 | 0.45 | 0.60 | 0.30 | 7.00 | 1.18 |
17 | 0.30 | 0.40 | 0.05 | 7.00 | 1.78 |
18 | 0.60 | 0.40 | 0.05 | 7.00 | 0.71 |
19 | 0.30 | 0.40 | 0.30 | 7.00 | 2.07 |
20 | 0.60 | 0.40 | 0.30 | 7.00 | 0.64 |
21 | 0.45 | 0.20 | 0.17 | 5.00 | 0.40 |
22 | 0.45 | 0.60 | 0.17 | 5.00 | 1.44 |
23 | 0.45 | 0.20 | 0.17 | 9.00 | 0.58 |
24 | 0.45 | 0.60 | 0.17 | 9.00 | 0.60 |
25 | 0.45 | 0.40 | 0.17 | 7.00 | 0.64 |
26 | 0.45 | 0.40 | 0.17 | 7.00 | 1.03 |
27 | 0.45 | 0.40 | 0.17 | 7.00 | 0.75 |
28 | 0.45 | 0.40 | 0.17 | 7.00 | 0.80 |
29 | 0.45 | 0.40 | 0.17 | 7.00 | 0.87 |
Source of Variance | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significance |
---|---|---|---|---|---|---|
Model | 2.10 | 9 | 0.23 | 19.97 | <0.0001 | ** |
A | 0.88 | 1 | 0.88 | 75.60 | <0.0001 | ** |
B | 0.20 | 1 | 0.20 | 16.92 | 0.0006 | ** |
C | 0.21 | 1 | 0.21 | 17.58 | 0.0005 | ** |
D | 0.11 | 1 | 0.11 | 9.67 | 0.0058 | ** |
BD | 0.079 | 1 | 0.079 | 6.76 | 0.0176 | * |
A2 | 0.56 | 1 | 0.56 | 47.59 | <0.0001 | ** |
Residual | 0.22 | 19 | 0.012 | |||
Lack of fit | 0.20 | 15 | 0.013 | 2.11 | 0.2459 | |
Pure error | 0.025 | 4 | 6.23 × 10-3 | |||
Summation | 2.32 | 28 | ||||
R2 = 0.9044 adj-R2 = 0.8591 C.V. = 10.77% Adeq Precisior = 16.537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Chen, C.; Quan, W.; Xie, S.; Shi, F.; Ma, Z.; Wu, M. Calibration Parameter of Soil Discrete Element Based on Area Difference Method. Agriculture 2023, 13, 648. https://doi.org/10.3390/agriculture13030648
Zeng Y, Chen C, Quan W, Xie S, Shi F, Ma Z, Wu M. Calibration Parameter of Soil Discrete Element Based on Area Difference Method. Agriculture. 2023; 13(3):648. https://doi.org/10.3390/agriculture13030648
Chicago/Turabian StyleZeng, Yi, Chaopeng Chen, Wei Quan, Shuangpeng Xie, Fanggang Shi, Zitao Ma, and Mingliang Wu. 2023. "Calibration Parameter of Soil Discrete Element Based on Area Difference Method" Agriculture 13, no. 3: 648. https://doi.org/10.3390/agriculture13030648
APA StyleZeng, Y., Chen, C., Quan, W., Xie, S., Shi, F., Ma, Z., & Wu, M. (2023). Calibration Parameter of Soil Discrete Element Based on Area Difference Method. Agriculture, 13(3), 648. https://doi.org/10.3390/agriculture13030648