Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
- The production of fertilizers and agrochemicals used to grow plants.
- The production of substrates used in cultivation.
- Energy consumption for irrigation.
3. Results and Discussion
4. Conclusions
- The use of sheep wool as a substrate in the hydroponic cultivation of cucumbers did not require the changing of irrigation and fertilization techniques. This resulted in a reduction in the obtained yield of approximately 10% compared to the mineral wool substrate.
- Using sheep wool as a substrate reduced water consumption by about 13% per biomass yield.
- Within the accepted system boundary, the use of the sheep wool substrate reduced the greenhouse effect by 83 kg CO2 eq · Mg−1 of commercial yield.
- The use of the sheep wool did not increase the phytosanitary risk of the cultivated plants.
- The use of sheep wool as a substrate for soilless plastic greenhouse cultivation is a rational solution for the development of waste-free methods of food production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schillhorn van Veen, T.W. The Kyrgyz Sheep Herders at a Crossroads; Paper 38d; Overseas Development Institute: London, UK, 1995. [Google Scholar]
- Li, J.-X.; Chen, Y.-N.; Xu, C.-C.; Li, Z. Evaluation and analysis of ecological security in arid areas of Central Asia based on the emergy ecological footprint (EEF) model. J. Clean. Prod. Eval. 2019, 235, 664–677. [Google Scholar] [CrossRef]
- Borlea Mureşan, S.I.; Tiuc, A.E.; Nemeş, O.; Vermeşan, H.; Ovidiu Vasile, O. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials 2020, 13, 694. [Google Scholar] [CrossRef]
- Hegyi, A.; Bulacu, C.; Szilagyi, H.; Lăzărescu, A.-V.; Meită, V.; Vizureanu, P.; Mihaela Sandu, M. Improving Indoor Air Quality by Using Sheep Wool Thermal Insulation. Materials 2021, 14, 2443. [Google Scholar] [CrossRef]
- Abdallah, A.; Ugolini, F.; Baronti, S.; Maienza, A.; Camilli, F.; Bonora, L.; Martelli, F.; Primicerio, J.; Ungaro, F. The potential of recycling wool residues as an amendment for enhancing the physical and hydraulic properties of a sandy loam soil. Int. J. Recycl. Org. Waste Agric. 2019, 8, 131–143. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Dada, O.; McDonnell, K.P. The Potential for Hydrolysed Sheep Wool as a Sustainable, Source of Fertiliser for Irish Agriculture. Sustainability 2022, 14, 365. [Google Scholar] [CrossRef]
- Komorowska, M.; Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Findura, P.; Gurgulu, H.; Stuglik, J.; Chowaniak, M.; Atılgan, A. Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan. Energies 2022, 15, 6358. [Google Scholar] [CrossRef]
- Gerber, P.; Chilonda, P.; Franceschini, G.; Menzi, H. Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresour. Technol. 2005, 96, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kapusta-Duch, J.; Kuboń, M.; Komorowska, M.; Karcz, J. Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production. Sustainability 2019, 11, 5612. [Google Scholar] [CrossRef]
- Niemiec, M.; Chowaniak, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Selected Properties of Soils for Long-Term Use in Organic Farming. Sustainability 2020, 12, 2509. [Google Scholar] [CrossRef]
- Avadí, A.; Aissani, L.; Pradel, M.; Wilfart, A. Life cycle inventory data on French organic waste treatments yielding organic amendments and fertilisers. Data Brief 2020, 28, 105000. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A. Evaluation of the chemical composition of raw common duckweed (Lemna minor L.) and pulp after methane fermentation. J. Elem. 2018, 23, 685–695. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas. Energies 2020, 13, 1825. [Google Scholar] [CrossRef]
- Caruso, G.; Villari, G.; Melchionna, G.; Stefano Conti, S. Effects of cultural cycles and nutrient solutions on plant growth, yield and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Sci. Hortic. 2011, 129, 479–485. [Google Scholar] [CrossRef]
- Vanipriya, C.H.; Maruyi Malladi, S.; Gupta, G. Artificial intelligence enabled plant emotion xpresser in the development hydroponics system. Mater. Today Proc. 2021, 45, 5034–5040. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies 2020, 13, 2063. [Google Scholar] [CrossRef]
- Abedin, T.; Yamamoto, A.; Hayashi, T.; Hosokawa, M. Drip fertigation enhances the growth of hydroponic lettuce (Lactuca sativa) using polyester fiber substrate. Sci. Hortic. 2021, 276, 109604. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.H.; Bar-Tal, L. Chapter 14—Growing plants in soilless culture: Operational conclusions. In Soilless Culture, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 637–669. [Google Scholar] [CrossRef]
- Bougoul, S.; Ruy, S.; de Groot, F.; Boulard, T. Hydraulic and physical properties of stone wool substrates in horticulture. Sci. Hortic. 2005, 104, 391–405. [Google Scholar] [CrossRef]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar] [CrossRef]
- Taft, H.E.; Cross, P.A.; Hastings, A.; Yeluripati, J.; Jones, D.L. Estimating greenhouse gases emissions from horticultural peat soils using a DNDC modelling approach. J. Environ. Manag. 2015, 233, 681–694. [Google Scholar] [CrossRef]
- Gavilanes-Terán, I.; Jara-Samaniego, J.; Idrovo-Novillo, J.; Angeles Bustamante, M.A.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; López, M.; Concepción Paredes, C. Agroindustrial compost as a peat alternative in the horticultural industry of Ecuador. J. Environ. Manag. 2017, 186, 79–87. [Google Scholar] [CrossRef]
- Xing, J.; Grud, N.; Xiong, J.; Liu, W. Influence of organic substrates on nutrient accumulation and proteome changes in tomato-roots. Sci. Hortic. 2019, 252, 192–200. [Google Scholar] [CrossRef]
- Nerlich, A.; and Dannehl, D. Soilless Cultivation: Dynamically Changing Chemical Properties and Physical Conditions of Organic Substrates Influence the Plant Phenotype of Lettuce. Front. Plant Sci. Sec. Plant Nutr. 2021, 11, 601455. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.M.A.; Alves-Pereira, I.; Morais, C.; Alemão, A.; Ferreira, R. Effects of Coir-Based Growing Medium with Municipal Solid Waste Compost or Biochar on Plant Growth, Mineral Nutrition, and Accumulation of Phytochemicals in Spinach. Plants 2022, 11, 1893. [Google Scholar] [CrossRef] [PubMed]
- Sahariah, B.; Sinha, I.; Sharma, P.; Goswami, L.; Bhattacharyya, P.; Gogoi, N.; Bhattacharya, S.S. Efficacy of bioconversion of paper mill bamboo sludge and lime waste by composting and vermiconversion technologies. Chemosphere 2014, 109, 77–83. [Google Scholar] [CrossRef]
- Palla, M.; Turrini, A.; Cristani, C.; Bonora, L.; Pellegrini, D.; Primicerio, J.; Grassi, A.; Hilaj, F.; Giovannetti, M.; Agnolucci, M. Impact of sheep wool residues as soil amendments on olive beneficial symbionts and bacterial diversity. Bioresour. Bioprocess. 2022, 9, 786. [Google Scholar] [CrossRef]
- EN 13041: 1999; Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space. CEN: Vienna, Austria, 1999.
- ILCD. General Giude for Life Cycle Assessment Detailed Gaidance; JRC European Commision: Brussels, Belgium, 2010; p. 394. [Google Scholar]
- Giama, E.; Papadopoulos, A.M. Benchmarking carbon footprint and circularity in production processes: The case of stonewool and extruded polysterene. J. Clean. Prod. 2020, 257, 120559. [Google Scholar] [CrossRef]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chart -32. High-productive agricultural technologies to fulfill future food demands: Hydroponics, aquaponics, and precision/smart agriculture. Future Foods Glob. Trends Oppor. Sustain. Chall. 2022, 555–567. [Google Scholar] [CrossRef]
- Böhme, M.H.; Pinker, I.; Grueneberg, H.; Grueneberg, S.; Herfort, S. Sheep wool as fertiliser for vegetables and flowers in organic farming. Acta Hortic. 2012, 933, 195–202. [Google Scholar] [CrossRef]
- Slamič, B.; Jug, T. Influence of Different Substrate on Nutrients in Lettuce. Glob. J. Bot. Sci. 2017, 5, 50–54. [Google Scholar] [CrossRef]
- Lal, B.; Sharma, S.C.; Meena, R.L.; Sarkar, S.; Sahoo, A.; Balai, R.C.; Gautam, P.; Meena, B.P. Utilization of byproducts of sheep farming as organic fertilizer for improving soil health and productivity of barley forage. J. Environ. Manag. 2020, 269, 110765. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Clark, S. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. J. Clean. Prod. 2014, 73, 183–192. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Lassaletta, L.; Aguilera, E.; del Prado, A.; Garnier, J.; Billen, G.; Iglesias, A.; Sánchez, B.; Guardia, G.; Ábalos, D.; et al. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric. Ecosyst. Environ. 2017, 238, 5–24. [Google Scholar] [CrossRef]
- van Kooten, O.; Heuvelink, E.; Stanghellini, C. New Development in Greenhouse Technology can Mitigate the Water Shortage Problem of the 21st Century. Acta Hortic. 2008, 767, 45–52. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Assessment of the Possibilities for the Use of Selected Waste in Terms of Biogas Yield and Further Use of Its Digestate in Agriculture. Materials 2022, 15, 988. [Google Scholar] [CrossRef]
- Postemsky, P.D.; Marinangeli, P.A.; Curvetto, N.R. Recycling of residual substrate from Ganoderma lucidum mushroom cultivation as biodegradable containers for horticultural seedlings. Sci. Hortic. 2016, 201, 329–337. [Google Scholar] [CrossRef]
- Santos, D.L.; Coelho, F.C.; da Cunha, F.F.; Rodrigues Donato, S.L.; de Paula Bernado, W.; Rodrigues, W.P.; Campostrini, E. Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency. Agric. Water Manag. 2021, 243, 106421. [Google Scholar] [CrossRef]
- Kool, A.; Marinussen, M.; Blonk, H. LCI Data for the Calculation Tool Feedprint for Greenhouse Gas Emissions of Feed Production and Utilization: GHG Emissions of N, P, and K Fertilizer Production. Research Station ART; Blonk Consultants: Gouda, The Netherlands, 2012. [Google Scholar]
- Rashidov, N.; Chowaniak, M.; Niemiec, M.; Mamurovich, G.S.; Gufronovich, M.J.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Komorowska, M. Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan. Energies 2021, 14, 6160. [Google Scholar] [CrossRef]
- Brandhorst, J.; Spritzendorfer, J.; Gildhorn, K.; Hemp, M. Dämmstoffe aus nachwachsenden Rohstoffen. In Fachagentur Nachwachsende Rohstoffe e.V; FNR, Ed.; Druckerei Weidner: Rostock, Germany, 2012. [Google Scholar]
- Zach, J.; Korjeni, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 21 February 2023).
- Swiss Office of Quantis. Quantis Switzerland Parc Scientifique EPFL, Bât D CH—1015 Lausanne Comparative Life Cycle Assessment of Horticultural Growing Media Based on Peat, and Other Growing Media Constituents; Final Report; Swiss Office of Quantis: Lausanne, Switzerland, 2012; p. 156. [Google Scholar]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities, Defra Project Report IS0205. 2006. Available online: http://randd.defra.gov.uk/Default.aspx (accessed on 21 February 2023).
- Carlsson-Kanyama, A. Climate change and dietary choices how can emissions of greenhouse gases from food consumption be reduced? Food Policy 1998, 23, 277–293. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- Zarei, M.J.; Kazemi, N.; Marzban, A. Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. J. Saudi Soc. Agric. Sci. 2019, 18, 249–255. [Google Scholar] [CrossRef]
- FAO. Global Database of GHG Emissions Related to Feed Crops: Methodology; Version 1; Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2017. [Google Scholar]
- Acuña, A.; Bonachela, S.; Magán, J.J.; Marfà, O.; Hernández, J.H.; Cáceres, R. Reuse of rockwool slabs and perlite grow-bags in a low-cost greenhouse: Substrates’ physical properties and crop production. Sci. Hortic. 2013, 160, 139–147. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M. Assessment of the possibility of implementing the GLOBAL GAP standard in selected beanproducing farms in western Kyrgyzstan. E3S Web Conf. 2019, 132, 02005. [Google Scholar] [CrossRef]
- Chowaniak, M.; Rashidov, N.; Niemiec, M.; Gambuś, F.; Lepiarczyk, A. The Impact of Training Systems on Productivity and GHG Emissions from Grapevines in the Sughd Region in Northern Tajikistan. Agronomy 2020, 10, 818. [Google Scholar] [CrossRef]
- Niemiec, M.; Chowaniak, M.; Zuzek, D.; Komorowska, M.; Mamurovich, G.S.; Gafurovich, K.K.; Usmanov, N.; Kamilova, D.; Rahmonova, J.; Rashidov, N. Evaluation of the chemical composition of soil as well as vine leaves and berries from the selected commercial farms in the republic of Tajikistan. J. Elem. 2020, 25, 675–686. [Google Scholar] [CrossRef]
- Broda, J.; Przybyło, S.; Kobiela-Mendrek, K.; Biniaś, D.; Rom, M.; Grzybowska-Pietras, J.; Laszczak, R. Biodegradation of sheep wool geotextiles. Int. Biodeterior. Biodegrad. 2016, 115, 31–38. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrate, for production of vegetable transplants − I. Physical properties of wood fiber substrates. Sci. Hortic. 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Górecki, R.S.; Górecki, M.T. Utilization of Waste Wool as Substrate Amendment in Pot Cultivation of Tomato, Sweet Pepper, and Eggplant. Polish J. Environ. Stud. 2010, 19, 1083–1087. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-1c3d0b8e-6d08-419d-8b12-3552cd37ef70 (accessed on 21 February 2023).
- Jeliazkov, V.D. Assessment of Wool Waste and Hair Waste as Soil Amendment and Nutrient Source. J. Environ. Qual. 2005, 34, 2310–2317. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Stratton, G.W.; Pincock, J.; Butler, S.; Jeliazkova, E.A.; Nedkov, N.K.; Gerard, P.D. Wool-waste as organic nutrient source for container-grown plants. Waste Manag. 2009, 29, 2160–2164. [Google Scholar] [CrossRef]
Substrate Type | Bulk Density (BDh) | Total Pore Space (TPS) | Air Capacity (AIRC) | Total Water-Holding Capacity (TWHC) | Shrinkage |
---|---|---|---|---|---|
Unit | kg · dm−3 | % | % | kg · m−3 | % |
Quality requirements for the substrate | <0.4 | >85 | 20–30 | 600–1000 | <30 |
Mineral wool | 0.0722 | 96.3 | 28 | 698 | 0.9 |
Sheep wool | 0.0800 | 93.1 | 25 | 572 | 0.8 |
C | N | Ca | S | Mg | P | K | Na | Fe | B | Al |
---|---|---|---|---|---|---|---|---|---|---|
% | g·kg−1 | mg·kg−1 | ||||||||
41.8 | 7.8 | 5.822 | 5 | 1.42 | 0.905 | 30.35 | 1.128 | 249 | 9.8 | 162 |
Yield Structure | Unit | Mineral Wool Substrate | Sheep Wool Substrate | ||
---|---|---|---|---|---|
Average Value | Range | Average Value | Range | ||
No. of pcs. per plant | pcs · plant−1 | 24.58 a | 22–27 | 23.77 a | 22–26 |
No. of kg per 1 plant | kg · plant−1 | 10.81 a | 8.86–12.31 | 9.98 a | 8.72–13.24 |
Cucumber yield | t · ha−1 | 159.5 b | 153.7–162.6 | 146.8 a | 144.2–153.9 |
Average weight of 1 cucumber | kg | 0.447 a | 0.383–0495 | 0.422 a | 0.372–0498 |
Mineral Wool Substrate | Sheep Wool Substrate | |
---|---|---|
Consumption of water for irrigation m3 · ha−1 | 4500 | 3941 |
Use of water by plants m3 · ha−1 | 1840 | 1932 |
Water losses (leaching) m3 · ha−1 | 2660 | 2009 |
Consumption of water for irrigation dm3 · kg−1 of commercial yield | 28.21 | 26.85 |
Use of water by plants dm3 · kg−1 of commercial yield | 11.54 | 13.16 |
Water losses (leaching) dm3 · kg−1 of commercial yield | 16.68 | 13.69 |
Emission Factor CO2 eq · kg−1 * | Amount kg of Fertilizers · ha−1 | Amount of Emission CO2 eq · ha−1 | |||
---|---|---|---|---|---|
Mineral Wool | Sheep Wool | Mineral Wool | Sheep Wool | ||
Ammonium molybdate | 1.2 | 0.330 | 0.281 | 0.396 | 0.337 |
Magnesium sulfate | 0.3 | 1033 | 878.1 | 309.9 | 263.4 |
Potassium nitrate | 2.9 | 2785 | 2367 | 8077 | 6865 |
Calcium nitrate | 3.3 | 2785 | 2367 | 9191 | 7812 |
Magnesium nitrate | 2.8 | 333.2 | 283.2 | 933.0 | 793.0 |
Manganese sulfate | 3.6 | 4.172 | 3.546 | 15.02 | 12.77 |
Zinc sulfate | 3.8 | 4.152 | 3.529 | 15.78 | 13.41 |
Copper sulfate | 4.0 | 0.582 | 0.495 | 2.328 | 1.979 |
Monoammonium phosphate | 4.55 | 125.4 | 106.6 | 570.6 | 485.0 |
Borax | 0.72 | 8.331 | 7.081 | 5.998 | 5.099 |
Iron chelate | 1.55 | 3.75 | 3.188 | 5.813 | 4.941 |
Ammonium nitrate | 7.99 | 20.83 | 17.71 | 166.4 | 141.5 |
Potassium sulfate | 0.12 | 197.7 | 168.0 | 23.72 | 20.17 |
Total | 7301 | 6206 | 1932 | 1641 |
Unit | Mineral Wool Substrate | Sheep Wool Substrate | |||||
---|---|---|---|---|---|---|---|
Quantity | Emission Factor CO2 eq · Unit−1 | Total Emission CO2 eq · Unit−1 | Quantity | Emission Factor CO2 eq · Unit−1 | Total Emission in CO2 eq · ha−1 N | ||
Substrate | m3 | 75 | 167 | 12,525 | 75 | 0 | 0 |
Electric power | KWh | 13,333 | 0.9245 | 12,326 | 13,021 | 0.9245 | 12,038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowska, M.; Niemiec, M.; Sikora, J.; Gródek-Szostak, Z.; Gurgulu, H.; Chowaniak, M.; Atilgan, A.; Neuberger, P. Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation. Agriculture 2023, 13, 554. https://doi.org/10.3390/agriculture13030554
Komorowska M, Niemiec M, Sikora J, Gródek-Szostak Z, Gurgulu H, Chowaniak M, Atilgan A, Neuberger P. Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation. Agriculture. 2023; 13(3):554. https://doi.org/10.3390/agriculture13030554
Chicago/Turabian StyleKomorowska, Monika, Marcin Niemiec, Jakub Sikora, Zofia Gródek-Szostak, Hatice Gurgulu, Maciej Chowaniak, Atilgan Atilgan, and Pavel Neuberger. 2023. "Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation" Agriculture 13, no. 3: 554. https://doi.org/10.3390/agriculture13030554
APA StyleKomorowska, M., Niemiec, M., Sikora, J., Gródek-Szostak, Z., Gurgulu, H., Chowaniak, M., Atilgan, A., & Neuberger, P. (2023). Evaluation of Sheep Wool as a Substrate for Hydroponic Cucumber Cultivation. Agriculture, 13(3), 554. https://doi.org/10.3390/agriculture13030554