Biopesticide Consumption in India: Insights into the Current Trends
Abstract
:1. Introduction
2. Global Market of Biopesticides
3. Categories of Biopesticides
4. Production and Consumption of Biopesticide in India
- Bacillus thuringiensis var. israelensis;
- Bacillus thuringiensis var. kurstaki;
- Bacillus thuringiensis var. galleriae;
- Bacillus sphaericus;
- Trichoderma viride;
- Trichoderma harzianum;
- Pseudomonas fluorescens;
- NPV of Helicoverpa armigera;
- Beauveria bassiana;
- NPV of Spodoptera litura;
- Neem-based pesticides;
- Cymbopogon.
5. Biopesticide Usage Pattern in India
6. Regulation of Biopesticide
7. Role of Biocontrol agent in Biopesticide Development
Essential Oils as Biopesticides
8. Technological Advancement in Enhancing Biopesticide Efficacy
8.1. Nanotechnology
8.2. New Strains
8.3. Recombinant DNA Technology
8.4. RNAi for Biopesticide
9. Usage of Biopesticide as a Contributor to Agriculture and Sustainable Development
10. Potential Risk of Biopesticides to Human and Ecosystem Health
11. Biopesticide Application and Its Limitations
- Availability of plant sources: the production of a biopesticide is dependent on the availability of host plants in large quantities and their cultivation. Until now, these plants are grown for food, medicine, etc. Moreover, engaging in commercial production will require huge land areas, which are mostly all reserved for crop cultivation, hence the incapability of meeting the correct applied dosage remains inappropriate.
- Formulation: this is challenging as more than one active compound with different chemical properties can be derived from one plant. The extraction procedure requires the use of organic solvents, which pollutes the environment through their disposal.
- Shelf life: compared to their rate of biodegradability, they have a very short shelf life. This has an impact on the cost of development, production methods, and inconsistency in their field performance.
- Specificity: microbes form a very small portion of the entire pest community. Hence, these microbial biopesticides are only effective in controlling a small portion of the pest population. They are also slow in action compared to chemical pesticides.
- Efficacy: the effectiveness of microbial pesticides is susceptible to adverse climatic conditions. The effect is reduced by heat, desiccation, UV light, etc. Hence, it is important to precisely design the system of delivery. Moreover, they show mild toxicity to the pathogens and are inferior to the efficacy of conventional pesticides.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pragati, N.; Solanki, H. Pesticides and Indian agriculture—A review. Int. J. Res. Granthaalayah 2021, 9, 250–263. [Google Scholar]
- Krattiger, A.F. Insect Resistance in Crops: A Case Study of Bacillus thuringiensis (Bt) and its Transfer to Developing Countries; ISAAA Briefs No. 2; ISAAA: Ithaca, NY, USA, 1997; p. 42. [Google Scholar]
- Vendan, S.E. Current Scenario of Biopesticides and Eco-Friendly Insect Pest Management in India. South Indian J. Biol. Sci. 2016, 2, 268. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Anamika, R.; Sharma, N.; Tyagi, M. Impact of Chemical Pesticides vs. Biopesticides on Human Health and Environment. Int. J. Res. Writ. 2019, 2, 45–51. [Google Scholar]
- Suresh, K.; Chandra, A.; Pandey, K. Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Mishra, J.; Dutta, V.; Arora, N.K. Biopesticides in India: Technology and sustainability linkages. 3 Biotech 2020, 10, 210. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in sustainable agriculture: Current status and future prospects. In New and Future Development in Biopesticide Research: Biotechnological Exploration; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–53. [Google Scholar]
- Swati, S.; Singh, R.P. Current challenges, constraints and future strategies for development of successful market for biopesticides. Clim. Chang. Environ. Sustain. 2016, 4, 129–136. [Google Scholar]
- Keswani, C. (Ed.) Bioeconomy for Sustainable Development; Springer-Nature: Singapore, 2020; p. 388. ISBN 978-981-13-9430-0. [Google Scholar]
- Marrone, P.G. The market and potential for biopesticides. Biopesticides: State of the art and future opportunities. Am. Chem. Soc. 2014, 1172, 245–258. [Google Scholar]
- Leng, P.; Zhang, Z.; Pan, G.; Zhao, M. Applications and development trends in biopesticides. Afr. J. Biotechnol. 2011, 10, 19864–19873. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D. Current status and recent developments in biopesticide use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.; Tewari, S.; Singh, S.; Arora, N.K. Biopesticides: Where We Stand? In Plant Microbes Symbiosis: Applied Facets; Arora, N., Ed.; Springer: New Delhi, India, 2015. [Google Scholar]
- Neelam, T.; Kaur, S.; Tomar, P.; Thakur, S.; Yadav, A.N. Microbial biopesticides: Current status and advancement for sustainable agriculture and environment. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 243–282. [Google Scholar]
- Srinivasan, R.; Sevgan, S.; Ekesi, S.; Tamò, M. Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest Manag. Sci. 2019, 75, 2446–2454. [Google Scholar] [CrossRef] [PubMed]
- Yatin, T. The biopesticide market for global agricultural use. Ind. Biotechnol. 2006, 2, 194–208. [Google Scholar]
- Olson, S. An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Hazarika, L.K.; Puzari, K.C.; Bhuyan, M. Biopesticide Technology and Entrepreneurship Development. In Science and Technology for Regional Development: Case for North-East India; Tezpur University: Assam, India; IIT Guwahati: Guwahati, India; C-MMACS: Bangalore, India, 2005; pp. 27–33. [Google Scholar]
- Suman, G.; Dikshit, A.K. Biopesticides: An ecofriendly approach for pest control. J. Biopestic. 2010, 3, 186. [Google Scholar]
- Abbey, L.; Abbey, J.; Leke-Aladekoba, A.; Iheshiulo EM, A.; Ijenyo, M. Biopesticides and biofertilizers: Types, production, benefits, and utilization. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; Wiley: Hoboken, NJ, USA, 2019; pp. 479–500. [Google Scholar]
- Kumar, S. Biopesticides: A need for food and environmental safety. J. Biofertil. Biopestic. 2012, 3, 4. [Google Scholar] [CrossRef]
- Rishap, D.; Singh, D.N. Biopesticides: A key to sustainable agriculture. Int. J. Pure App. Biosci. 2019, 7, 391–396. [Google Scholar]
- Agriculture and Agri-Food Canada. Directory of Biopesticides for Agricultural Crops in OECD Countries; Agriculture and Agri-Food Canada: Summerland, BC, Canada, 2010. Available online: https://publications.gc.ca/site/eng/359060/publication.html (accessed on 15 November 2022).
- Errol, H.; Gökçe, A. Production and consumption of biopesticides. In Advances in Plant Biopesticides; Springer: New Delhi, India, 2014; pp. 361–379. [Google Scholar]
- Silverio, F.O.; de Alvarenga, E.S.; Moreno, S.C.; Picanço, M.C. Synthesis and insecticidal activity of new pyrethroids. Pest Manag. Sci. 2009, 65, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Ghumar, V.; Sharma, N.; Gavkare, O.; Khachi, B.; Singh, D.K. Biopesticides-for Future. J. Ind. Pollut. 2014, 30, 203–205. [Google Scholar]
- Abdollahdokht, D.; Gao, Y.; Faramarz, S.; Poustforoosh, A.; Abbasi, M.; Asadikaram, G.; Nematollahi, M.H. Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chem. Biol. Technol. Agri. 2022, 9, 13. [Google Scholar] [CrossRef]
- Singhal, V. Biopesticides in India. In Biopesticides for Sustainable Agriculture, Prospects and Constraints; TERI: New Delhi, India, 2004; pp. 31–39. [Google Scholar]
- Chetan, K.; Dilnashin, H.; Birla, H.; Singh, S.P. Regulatory barriers to Agricultural Research commercialization: A case study of biopesticides in India. Rhizosphere 2019, 11, 100155. [Google Scholar]
- Chetan, K.; Sarma, B.K.; Singh, H.B. Synthesis of policy support, quality control, and regulatory management of biopesticides in sustainable agriculture. In Agriculturally Important Microorganisms; Springer: Singapore, 2016; pp. 3–12. [Google Scholar]
- Rajni, Y.; Singh, S.; Singh, A.N. Biopesticides: Current status and future prospects. Proc. Int. Acad. Ecol. Environ. Sci. 2022, 12, 211–233. [Google Scholar]
- Dar, S.A.; Khan, Z.H.; Khan, A.A.; Ahmad, S.B. Biopesticides–Its Prospects and Limitations: An Overview. In Perspect Anim Ecol Reprod; Astral International (P) Ltd.: New Delhi, India, 2019; pp. 296–314. [Google Scholar]
- Anindita, P.; Majumder, S.; Singh, S. Bio pesticide: A paradigm shift of pesticide development in India. Food Sci. Rep. 2022, 3, 22–25. [Google Scholar]
- GOI. Statistical Database|Directorate of Plant Protection, Quarantine & Storage|GOI. 2020. Available online: http://ppqs.gov.in/statistical-database (accessed on 22 November 2022).
- Bikramjit, S.; Biswas, I. Potential of Bio-pesticides in Indian agriculture vis-a-vis Rural Development. India J. Sci. Technol. 2008. [Google Scholar] [CrossRef]
- Indranil, C.; Roshan, D. Biopesticides Market Research 2020–2031. 2022. Available online: https://www.alliedmarketresearch.com/biopesticides-market (accessed on 22 November 2022).
- DPPQS. Directorate of Plant Protection Quarantine and Storage, Ministry of Agriculture and Farmers Welfare, Government of India. 2021. Available online: https://ppqs.gov.in/divisions (accessed on 22 November 2022).
- Desai, S.; Kumar, G.P.; Amalraj, E.L.D.; Talluri, V.R.; Peter, A.J. Challenges in regulation and registration of biopesticides: An overview. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications; Springer: Cham, Switzerland, 2016; pp. 301–308. [Google Scholar]
- Arora, N.K.; Verma, M.; Prakash, J.; Mishra, J. Regulation of biopesticides: Global concerns and policies. In Bioformulations: For sustainable Agriculture; Springer: New Delhi, India, 2016; pp. 283–299. [Google Scholar]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Kabaluk, J.; Todd, A.M.; Svircev, M.S.G.; Stephanie, G.W. (Eds.) The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide; IOBC Global: Berlin, Germany, 2010; pp. 15–16. [Google Scholar]
- Arjjumend, H.; Koutouki, K. Science of biopesticides and critical analysis of Indian legal frameworks regulating biocontrol agents. Int. J. Environ. Agric. Biotechnol. 2018, 11, 563–571. [Google Scholar] [CrossRef]
- Hazra, D.K.; Patanjali, P.; Raza, S.K. Formulation, Registration, and Quality Regulation of Plant Biopesticides. In Advances in Plant Biopesticides; Springer: Berlin/Heidelberg, Germany, 2014; p. 403. [Google Scholar]
- Travis, G.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Singh, H.B.; Sarma, B.K.; Keswani, C. Agriculturally Important Microorganisms: Commercialization and Regulatory Requirements in Asia; Springer: Singapore, 2016; p. 305. [Google Scholar]
- Keswani, C.; Dilnashin, H.; Birla, H.; Roy, P.; Tyagi, R.K.; Singh, D.; Rajput, V.D.; Minkina, T.; Singh, S.P. Global footprints of organochlorine pesticides: A pan-global survey. Environ. Geochem. Health 2022, 44, 149–177. [Google Scholar] [CrossRef]
- Dara, S.K. Insect resistance to biopesticides. UCANR E-J. Entomol. Biol. 2017. Available online: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25819 (accessed on 1 December 2022).
- Siegel, J.P. The mammalian safety of Bacillus thuringiensis-based insecticides. J. Invertebr. Pathol. 2001, 77, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazid, S.; Kalita, J.C.; Rajkhowa, R.C. A review on the use of biopesticides in insect pest management. Int. J. Sci. Adv. Technol. 2011, 1, 169–178. [Google Scholar]
- Gray, E.J.; Lee, K.D.; Souleimanov, A.M.; Di Falco, M.R.; Zhou, X.; Ly, A.; Charles, T.C.; Driscoll, B.T.; Smith, D.L. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol. 2006, 100, 545–554. [Google Scholar] [CrossRef]
- Yadav, E.; Pathak, D.V.; Sharma, S.K.; Kumar, M.; Sharma, P.K. Isolation and characterization of mutants of Pseudomonas maltophilia PM-4 altered in chitinolytic activity and antagonistic activity against root rot pathogens of clusterbean (Cyamopsis tetragonoloba). Indian J. Microbiol. 2007, 47, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Pathak, D.V.; Kumar, M.; Sharma, S.K.; Kumar, N.; Sharma, P.K. Crop improvement and root rot suppression by seed bacterization in chickpea. Archiv. Agron. Soil Sci. 2007, 53, 287–292. [Google Scholar] [CrossRef]
- Pathak, D.V.; Verma, N.K.; Kumar, M. Evaluation of phosphate solubilizing bacteria in chickpea using rockphosphate or diammonium phosphate as P source. Natl. J. Plant Improv. 2007, 9, 14–16. [Google Scholar]
- Dowd, P.F. Antiinsectan compounds derived from microorganisms. In Microbial Biopesticides; Koul, O., Dhaliwal, G.S., Eds.; Taylor & Francis: London, UK, 2002; pp. 113–116. [Google Scholar]
- Arthurs, S.P.; Lacey, L.A. Field evaluation of commercial formulations of the codling moth granulosis virus: Persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 2004, 31, 388–397. [Google Scholar] [CrossRef]
- Arthurs, S.P.; Lacey, L.A.; Fritts, R.J. Optimizing use of codling moth granulosis virus: Effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards. J. Econ. Entomol. 2005, 98, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.C. Protozoan control of pests. In Encyclopedia of Pest Management; Pimental, D., Ed.; Taylor & Francis: New York, NY, USA, 2002; pp. 673–676. [Google Scholar]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Miranpuri, G.S.; Khachatourians, G.G. Entomopathogenicity of Beauveria bassiana toward flea beetles, Phyllotreta cruciferae Goeze (Col., Chrysomelidae). J. Appl. Ento. 1995, 119, 167–170. [Google Scholar] [CrossRef]
- Lahlali, R.; Barka, E.A.; Jemâa, J.M.B. (Eds.) The Use of Plant Extracts and Essential Oils as Biopesticides; Front Agron: Cham, Switzerland, 2022. [Google Scholar]
- Medina-Romero, Y.M.; Hernandez-Hernandez, A.B.; Rodriguez-Monroy, M.A.; Canales-Martínez, M.M. Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Sci. Rep. 2021, 11, 20135. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, S.; Biradar, D.; Aladakatti, Y.R. Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 2016, 29, 1–13. [Google Scholar]
- Lu, W.; Senapati, D.; Wang, S.; Tovmachenko, O.; Singh, A.K.; Yu, H. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem. Phys. Letts. 2010, 487, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Sundaravadivelan, C.; Padmanabhan, M.N. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ. Sci. Pollut. Res. Int. 2014, 21, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.I.; Bulder, A.S.; de Heer, C.; Voorde, S.E.T.; Wijnhoven, S.W.; Marvin, H.J.; Sips, A.J. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 2009, 53, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop. Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Agrawal, S.; Rathore, P. Nanotechnology pros and cons to agriculture: A review. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 43–55. [Google Scholar]
- Prasad, R.; Kumar, V.; Prasad, K.S. Nanotechnology in sustainable agriculture: Present concerns and future aspects. Afr. J. Biotechnol. 2014, 13, 705–713. [Google Scholar]
- Kirk, W.W.; Schafer, R.S. August Efficacy of new active ingredient formulations and new biopesticides for managing Fusarium root rot disease of gladiolus hybrids. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17 August 2014; pp. 55–60. [Google Scholar]
- Ishikawa, S. Integrated disease management of strawberry anthracnose and development of a new biopesticide. J. Gen. Plant Pathol. 2013, 79, 441–443. [Google Scholar] [CrossRef]
- Eski, A.; Demir, D.; Sezen, K.; Demirbağ, Z.A. New biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 2017, 33, 95. [Google Scholar] [CrossRef] [PubMed]
- Mensah, R.; Moore, C.; Watts, N.; Deseo, M.A.; Glennie, P.; Pitt, A. Discovery and development of a new semiochemical biopesticide for cotton pest management: Assessment of extract effects on the cotton pest Helicoverpa spp. Entom. Exp. Appl. 2014, 152, 1–15. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 2017, 576, 10–21. [Google Scholar] [CrossRef]
- Ranga Rao, G.V.; Kumari, B.R.; Sahrawat, K.L.; Wani, S.P. Integrated pest management (IPM) for reducing pesticide residues in crops and natural resources. In New Horizons in Insect Science: Towards Sustainable Pest Management; Springer: New Delhi, India, 2015; pp. 397–412. [Google Scholar]
- Pavela, R.; Waffo-Teguo, P.; Biais, B.; Richard, T.; Mérillon, J.-M. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J. Pest Sci. 2017, 90, 961–970. [Google Scholar] [CrossRef]
- Dubois, C.; Arsenault-Labrecque, G.; Pickford, J. Evaluation of a new biopesticide against angular leaf spot in a commercial operation system. Acta Hortic. 2017, 1156, 757–764. [Google Scholar] [CrossRef]
- Fitches, E.; Edwards, M.; Mee, C.; Grishin, E.; Gatehouse, A.M.; Edwards, J.P.; Gatehouse, J. Fusion proteins containing insect-specific toxins as pest control agents:snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J. Insect Physiol. 2004, 50, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Tenllado, F.; Diaz-Ruiz, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 2001, 75, 12288–12297. [Google Scholar] [CrossRef] [Green Version]
- Tenllado, F.; Martinez-Garcia, B.; Vargas, M.; Diaz-Ruiz, J.R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 2003, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Gan, D.; Zhang, J.; Jiang, H.; Jiang, T.; Zhu, S.; Cheng, B. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 2010, 29, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.E.; Mazumdar, P.; Hee, T.W.; Song, A.L.A.; Othman, R.Y.; Harikrishna, J.A. Crude extracts of bacterially-expressed dsRNA protect orchid plants against Cymbidium mosaic virus during transplantation from in vitro culture. J. Hortic. Sci. Biotech 2014, 89, 569–576. [Google Scholar] [CrossRef]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Xu, Z.P.; Carroll, B.J. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 2017, 26, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Kogel, K.H. An RNAi-based control of fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PloS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef]
- Wang, M.; Weiberg, A.; Lin, F.M.; Thomma, B.P.H.J.; Huang, H.D.; Jin, H.L. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.Z.; Taning, C.N.T.; Christiaens, O.; Smagghe, G.; Wang, J.J. Rethink RNAi in insect pest control: Challenges and perspectives. Crop Prot. 2018, 55, 1–17. [Google Scholar]
- Sparks, T.C.; Nauen, R. IRAC: Mode of Action Classification and Insecticide Resistance Management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Deravel, J.; Krier, F.; Jacques, P. Biopesticides, a complementary and alternative approach to the use of agrochemicals. Biotechnol. Agron. Soc. Environ. 2014, 18, 220–232. [Google Scholar]
- Kalpana, T.; Anil, K. High Performance Liquid Chromatography (HPLC) and Phytochemical Screening of Three Plant Malvastrum Coromandelianum, Medicago Lupulina and Parathenium Hysterophorus. Ann. Rom. Soc. Cell Biol. 2021, 25, 3589–3596. [Google Scholar]
- Marteel-Parrish, A.; Newcity, K.M.; Matthey, J. Highlights of the Impacts of Green and Sustainable Chemistry on Industry, Academia and Society in the USA. Johns. Matthey Technol. Rev. 2017, 61, 207–221. [Google Scholar] [CrossRef]
- Czaja, K.; Góralczyk, K.; Struciński, P.; Hernik, A.; Korcz, W.; Minorczyk, M.; Ludwicki, J.K. Biopesticides–towards increased consumer safety in the European Union. Pest Manag. Sci. 2015, 71, 3–6. [Google Scholar] [CrossRef]
- Sudakin, D.L. Biopesticides. Toxicol. Rev. 2003, 22, 83–90. [Google Scholar] [CrossRef]
- Barfod, K.K.; Poulsen, S.S.; Hammer, M.; Larsen, S.T. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC. Microbiol. 2010, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, R.C.; Barbosa, W.F.; Martins, G.F.; Lima, M.A.P. The reduced-risk insecticide azadirachtin poses a toxicological hazard to stingless bee Partamona helleri (Friese 1900) queens. Chemosphere 2018, 201, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Yousf, M.J.; Ayaz, S.; Siddiqui, B.S. Toxicological evaluation of chlorpyrifos and Neem extract (Biosal B) against 3RD instars larvae of Drosophila melanogaster. J. Anim. Plant Sci. 2010, 20, 9–12. [Google Scholar]
- Vasconcelos, A.M.; Daam, M.A.; dos Santos, L.R.; Sanches, A.L.; Araújo, C.V.; Espíndola, E.L. Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology 2016, 25, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, S.; Yasmeen, R. Biochemical alterations in total proteins and related enzymes in tissues of Cyprinus carpio (L.) during sublethal exposure to karanjin based biopesticide Derisom. Indian J. Exp. Biol. 2021, 59, 125–131. [Google Scholar]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Zappalà, L.; Stark, J.D.; Desneux, N. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 2013, 8, e76548. [Google Scholar] [CrossRef] [Green Version]
- Keswani, C.; Prakash, O.; Bharti, N.; Vílchez, J.I.; Sansinenea, E.; Lally, R.D.; Singh, H.B. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci. Total Environ. 2019, 690, 841–852. [Google Scholar] [CrossRef]
- Singh, H.B.; Keswani, C.; Bisen, K.; Sarma, B.K.; Chakrabarty, P.K. Development and Application of Agriculturally Important Microorganisms in India. In Agriculturally Important Microorganisms: Commercial and Regulatory Requirement in Asia; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; Springer: Singapore, 2016; pp. 167–181. [Google Scholar]
YEAR | AREA UNDER CULTIVATION Unit: ‘000′ Hectare | AREA UNDER USE OF BIOPESTICIDES Unit: ‘000′ Hectare |
---|---|---|
2017–2018 | 132,011 | 7738 |
2018–2019 | 141,555 | 7119 |
2019–2020 | 198,552 | 14,636 |
2020–2021 | 188,595 | 14,014 |
Entomopathogenic Bacteria | Target | Mode of Action | Reference |
---|---|---|---|
Bacillus thuringiensis sp. Aizawai | Lepidoptera | Production of Bt δ-endotoxin | [61] |
Bacillus thuringiensis sp. Kurstaki | Lepidoptera | [61] | |
Bacillus thuringiensis japonensis strain Buibui | Coleoptera | [61] | |
Bacillus thuringiensis tenebrionis | Coleoptera | [61] | |
Bacillus thuringiensis israelensis | Diptera | [61] | |
Entomopathogenic Fungi | |||
Beauveria bassiana | One or more pest of Acarina, Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Thysanoptera, and others. | Cause muscardine insect disease | [62] |
Metarhizium anisopliae | [62] | ||
Paecilomyces lilacinus | Attack the host by inserting their conidia in integuments and joints | [62] | |
Metarhizium brunneum | [62] | ||
Hirsutella thompsonii | [62] | ||
Isaria fumosorosea | [62] | ||
Lecanicillium lecanii | [62] | ||
Lecanicillium longisporum | [62] | ||
Entomopathogenic Virus | |||
Nucelopolyhedrovirus | |||
Helicoverpa zea NVP | Lepidoptera | Kill the host when ingested and also spread during mating and egg laying | [21] |
Spodoptera exigua NVP | Lepidoptera | [21] | |
Granulovirus (GV) | [21] | ||
Cydia pomonella GV | Lepidoptera | [21] | |
Entomopathogenic Nematode | |||
Heterorhabditis bacteriophora | Several orders of soil borne pest | Inside the host, the nematodes release symbiotic bacteria that kill the host through bacterial septicemia | [50] |
Steinernema carpocapsae | [50] | ||
S. feltiae | [50] | ||
Entomopathogenic Protozoa | |||
Microsporan protozoans | The larva feeds on the viable spores and the infection cycle is repeated for the next generation. | ||
Nosema sp. | Lepidoptera and Orthoptera | [60] | |
Vairimorpha sp. | [60] |
Product | Target Pest | Chemical Nature | Reference |
---|---|---|---|
Products of the fungus Trichoderma harzianum | Fusarium root rot | Fungicide | [73] |
Strains of the fungus Talaromyces flavus SAY-Y-94-01 | Anthracnose caused by Glomerella cingulata and Colletotrichum acutatum | Fungicide | [74] |
Bacillus thuringiensis var. tenebrionis strain Xd3 (Btt-Xd3) | Alder leaf beetle (Agelastica alni) | Insecticide | [75] |
Extract of the species Clitoria ternatea (butterfly pea) | Helicoverpa spp. | Insecticide | [76] |
Olive mill waste | Various pests | Fungicide and Bactericide | [77] |
Alkaloid compound oxymatrine | Spodoptera litura, Helicoverpa armigera, Aphis gossypii | Insecticide | [78] |
Stilbenes isolated from grapevine extracts | Spodoptera littoralis | Insecticide | [79] |
Fermentation products of the bacterium Lactobacillus casei strain LPT-111 | Angular leaf spot caused by Xanthomonas fragariae | Bactericide | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, N.; Mitra, R.; Pal, S.; Ganguly, R.; Acharya, K.; Minkina, T.; Sarkar, A.; Keswani, C. Biopesticide Consumption in India: Insights into the Current Trends. Agriculture 2023, 13, 557. https://doi.org/10.3390/agriculture13030557
Chakraborty N, Mitra R, Pal S, Ganguly R, Acharya K, Minkina T, Sarkar A, Keswani C. Biopesticide Consumption in India: Insights into the Current Trends. Agriculture. 2023; 13(3):557. https://doi.org/10.3390/agriculture13030557
Chicago/Turabian StyleChakraborty, Nilanjan, Rusha Mitra, Somrhita Pal, Retwika Ganguly, Krishnendu Acharya, Tatiana Minkina, Anik Sarkar, and Chetan Keswani. 2023. "Biopesticide Consumption in India: Insights into the Current Trends" Agriculture 13, no. 3: 557. https://doi.org/10.3390/agriculture13030557
APA StyleChakraborty, N., Mitra, R., Pal, S., Ganguly, R., Acharya, K., Minkina, T., Sarkar, A., & Keswani, C. (2023). Biopesticide Consumption in India: Insights into the Current Trends. Agriculture, 13(3), 557. https://doi.org/10.3390/agriculture13030557